BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34892395)

  • 1. A variable gain physiological controller for a rotary left ventricular assist device.
    Silva LFV; Cordeiro TD; Lima AMN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5606-5609. PubMed ID: 34892395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physiological Controller for Turbodynamic Ventricular Assist Devices Based on Left Ventricular Systolic Pressure.
    Petrou A; Ochsner G; Amacher R; Pergantis P; Rebholz M; Meboldt M; Schmid Daners M
    Artif Organs; 2016 Sep; 40(9):842-55. PubMed ID: 27645395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of novel physiological load-adaptive control strategies for ventricular assist devices.
    Habigt M; Ketelhut M; Gesenhues J; Schrödel F; Hein M; Mechelinck M; Schmitz-Rode T; Abel D; Rossaint R
    Biomed Tech (Berl); 2017 Apr; 62(2):149-160. PubMed ID: 27855113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro evaluation of an adaptive Starling-like controller for dual rotary ventricular assist devices.
    Stephens A; Gregory S; Tansley G; Busch A; Salamonsen R
    Artif Organs; 2019 Nov; 43(11):E294-E307. PubMed ID: 31188476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control of implantable rotary blood pumps for heart failure patients.
    Bakouri MA; Salamonsen RF; Savkin AV; Alomari AH; Lim E; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():675-8. PubMed ID: 24109777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study.
    Petrou A; Pergantis P; Ochsner G; Amacher R; Krabatsch T; Falk V; Meboldt M; Daners MS
    Biomed Tech (Berl); 2017 Nov; 62(6):623-633. PubMed ID: 28182575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Importance of Venous Return in Starling-Like Control of Rotary Ventricular Assist Devices.
    Stephens AF; Gregory SD; Salamonsen RF
    Artif Organs; 2019 Mar; 43(3):E16-E27. PubMed ID: 30094842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control strategy for maintaining physiological perfusion with rotary blood pumps.
    Giridharan GA; Skliar M
    Artif Organs; 2003 Jul; 27(7):639-48. PubMed ID: 12823419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preload Sensitivity with TORVAD Counterpulse Support Prevents Suction and Overpumping.
    Gohean JR; Larson ER; Longoria RG; Kurusz M; Smalling RW
    Cardiovasc Eng Technol; 2019 Sep; 10(3):520-530. PubMed ID: 31187397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on Control of the Cardiovascular System Based on a Left Ventricular Assist Device].
    Wang F; Xu Q; Wu Z; Wen T; Ji J; He Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1075-83. PubMed ID: 29714970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of an advanced model reference sliding mode control method for cardiac assist device using a numerical model.
    Bakouri M
    IET Syst Biol; 2018 Apr; 12(2):68-72. PubMed ID: 29533220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study.
    Pauls JP; Stevens MC; Bartnikowski N; Fraser JF; Gregory SD; Tansley G
    Ann Biomed Eng; 2016 Aug; 44(8):2377-2387. PubMed ID: 26833037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.