BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34892400)

  • 1. Device Invariant Deep Neural Networks for Pulmonary Audio Event Detection Across Mobile and Wearable Devices.
    Ahmed MY; Zhu L; Rahman MM; Ahmed T; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5631-5637. PubMed ID: 34892400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Multivariate Domain Translation for Device Invariant Pulmonary Patient Identification from Cough and Speech Sounds.
    Ahmed MY; Vatanparvar K; Kuang J; Gao A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4473-4478. PubMed ID: 36085824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute Exacerbation of a Chronic Obstructive Pulmonary Disease Prediction System Using Wearable Device Data, Machine Learning, and Deep Learning: Development and Cohort Study.
    Wu CT; Li GH; Huang CT; Cheng YC; Chen CH; Chien JY; Kuo PH; Kuo LC; Lai F
    JMIR Mhealth Uhealth; 2021 May; 9(5):e22591. PubMed ID: 33955840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Empowered Wearable-Based Behavior Recognition for Search and Rescue Dogs.
    Kasnesis P; Doulgerakis V; Uzunidis D; Kogias DG; Funcia SI; González MB; Giannousis C; Patrikakis CZ
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biological Signal-Based Stress Monitoring Framework for Children Using Wearable Devices.
    Choi Y; Jeon YM; Wang L; Kim K
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable sensors with possibilities for data exchange: Analyzing status and needs of different actors in mobile health monitoring systems.
    Muzny M; Henriksen A; Giordanengo A; Muzik J; Grøttland A; Blixgård H; Hartvigsen G; Årsand E
    Int J Med Inform; 2020 Jan; 133():104017. PubMed ID: 31778885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition.
    Lattanzi E; Donati M; Freschi V
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Non-Touchscreen Tactile Wearable Interface as an Alternative to Touchscreen-Based Wearable Devices.
    Yoon H; Park SH
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32111082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edge computing in 5G cellular networks for real-time analysis of electrocardiography recorded with wearable textile sensors.
    Spicher N; Klingenberg A; Purrucker V; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1735-1739. PubMed ID: 34891622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Framework for Learning Analytics Using Commodity Wearable Devices.
    Lu Y; Zhang S; Zhang Z; Xiao W; Yu S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28613236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study.
    Chae SH; Kim Y; Lee KS; Park HS
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Precision Health Service for Chronic Diseases: Development and Cohort Study Using Wearable Device, Machine Learning, and Deep Learning.
    Wu CT; Wang SM; Su YE; Hsieh TT; Chen PC; Cheng YC; Tseng TW; Chang WS; Su CS; Kuo LC; Chien JY; Lai F
    IEEE J Transl Eng Health Med; 2022; 10():2700414. PubMed ID: 36199984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Behavior Assessment from Uncontrolled Everyday Audio Recordings by Deep Learning.
    Schindler D; Spors S; Demiray B; Krüger F
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smartwatch User Interface Implementation Using CNN-Based Gesture Pattern Recognition.
    Kwon MC; Park G; Choi S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30205509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forensic Inspection of Sensitive User Data and Artifacts from Smartwatch Wearable Devices.
    Odom NR; Lindmar JM; Hirt J; Brunty J
    J Forensic Sci; 2019 Nov; 64(6):1673-1686. PubMed ID: 31674672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices.
    Sanchez-Iborra R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Methods for Automatic Silent Speech Recognition Using a Wearable Graphene Strain Gauge Sensor.
    Ravenscroft D; Prattis I; Kandukuri T; Samad YA; Mallia G; Occhipinti LG
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Physical Training Data Processing Based on Wearable Devices.
    Liu X
    Comput Intell Neurosci; 2022; 2022():1207457. PubMed ID: 35634051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards On-Device Dehydration Monitoring Using Machine Learning from Wearable Device's Data.
    Sabry F; Eltaras T; Labda W; Hamza F; Alzoubi K; Malluhi Q
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.