These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34892424)

  • 1. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity
    Kim WS; Hong S; Park SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5742-5746. PubMed ID: 34892424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device.
    Hong S; Kim WS; Han Y; Cherukuri R; Jung H; Campos C; Wu Q; Park SI
    Bio Protoc; 2022 Mar; 12(5):e4341. PubMed ID: 35592610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.
    Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW
    Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
    Samineni VK; Yoon J; Crawford KE; Jeong YR; McKenzie KC; Shin G; Xie Z; Sundaram SS; Li Y; Yang MY; Kim J; Wu D; Xue Y; Feng X; Huang Y; Mickle AD; Banks A; Ha JS; Golden JP; Rogers JA; Gereau RW
    Pain; 2017 Nov; 158(11):2108-2116. PubMed ID: 28700536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An implantable wireless optogenetic stimulation system for peripheral nerve control.
    Kang-Il Song ; Park SE; Myoung-Soo Kim ; Chulmin Joo ; Yong-Jun Kim ; Suh JK; Dosik Hwang ; Inchan Youn
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1033-6. PubMed ID: 26736441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organ-specific, multimodal, wireless optoelectronics for high-throughput phenotyping of peripheral neural pathways.
    Kim WS; Hong S; Gamero M; Jeevakumar V; Smithhart CM; Price TJ; Palmiter RD; Campos C; Park SI
    Nat Commun; 2021 Jan; 12(1):157. PubMed ID: 33420038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and stretchable polymer optical fibers for chronic brain and vagus nerve optogenetic stimulations in free-behaving animals.
    Cao Y; Pan S; Yan M; Sun C; Huang J; Zhong C; Wang L; Yi L
    BMC Biol; 2021 Nov; 19(1):252. PubMed ID: 34819062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics.
    Park SI; Brenner DS; Shin G; Morgan CD; Copits BA; Chung HU; Pullen MY; Noh KN; Davidson S; Oh SJ; Yoon J; Jang KI; Samineni VK; Norman M; Grajales-Reyes JG; Vogt SK; Sundaram SS; Wilson KM; Ha JS; Xu R; Pan T; Kim TI; Huang Y; Montana MC; Golden JP; Bruchas MR; Gereau RW; Rogers JA
    Nat Biotechnol; 2015 Dec; 33(12):1280-1286. PubMed ID: 26551059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics.
    Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW
    Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics.
    Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW
    Small; 2018 Jan; 14(4):. PubMed ID: 29215787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft, wireless and subdermally implantable recording and neuromodulation tools.
    Cai L; Gutruf P
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33607646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation.
    Stuart T; Jeang WJ; Slivicki RA; Brown BJ; Burton A; Brings VE; Alarcón-Segovia LC; Agyare P; Ruiz S; Tyree A; Pruitt L; Madhvapathy S; Niemiec M; Zhuang J; Krishnan S; Copits BA; Rogers JA; Gereau RW; Samineni VK; Bandodkar AJ; Gutruf P
    ACS Nano; 2023 Jan; 17(1):561-574. PubMed ID: 36548126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.