These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34892473)

  • 1. Ultrasound Echogenicity-based Assessment of Muscle Fatigue During Functional Electrical Stimulation.
    Zhang Q; Iyer A; Lambeth K; Kim K; Sharma N
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5948-5952. PubMed ID: 34892473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Echogenicity as an Indicator of Muscle Fatigue during Functional Electrical Stimulation.
    Zhang Q; Iyer A; Lambeth K; Kim K; Sharma N
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography and Electromyography.
    Zhang Q; Kim K; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):318-327. PubMed ID: 31725385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of fatigue in the isometric electrical activation of paralyzed hand muscles of persons with tetraplegia.
    Heasman JM; Scott TR; Vare VA; Flynn RY; Gschwind CR; Middleton JW; Rutkowski SB
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):286-96. PubMed ID: 11001508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle Dorsiflexion Strength Monitoring by Combining Sonomyography and Electromyography.
    Zhang Q; Sheng Z; Moore-Clingenpeel F; Kim K; Sharma N
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():240-245. PubMed ID: 31374636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of excessive fatigue associated with functional electrical stimulation.
    Buckmire AJ; Arakeri TJ; Reinhard JP; Fuglevand AJ
    J Neural Eng; 2018 Dec; 15(6):066004. PubMed ID: 30168443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of Human Lower Limb Motion and Muscle Fatigue Status Using a Wearable FES-sEMG System.
    Zhang W; Bai Z; Yan P; Liu H; Shao L
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of random modulation of functional electrical stimulation parameters on muscle fatigue.
    Graham GM; Thrasher TA; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):38-45. PubMed ID: 16562630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG and metabolite-based prediction of force in paralyzed quadriceps muscle under interrupted stimulation.
    Levin O; Mizrahi J
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):301-14. PubMed ID: 10498376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model.
    Doll BD; Kirsch NA; Bao X; Dicianno BE; Sharma N
    Muscle Nerve; 2018 Apr; 57(4):634-641. PubMed ID: 28833237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue compensation during FES using surface EMG.
    Winslow J; Jacobs PL; Tepavac D
    J Electromyogr Kinesiol; 2003 Dec; 13(6):555-68. PubMed ID: 14573370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and prediction of FES-induced fatigue.
    Tepavac D; Schwirtlich L
    J Electromyogr Kinesiol; 1997 Mar; 7(1):39-50. PubMed ID: 20719690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fatigue on muscle elasticity in the human forearm using ultrasound strain imaging.
    Witte RS; Kim K; Martin BJ; O'Donnell M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4490-3. PubMed ID: 17947090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Ankle Torque and Stiffness Induced by Functional Electrical Stimulation.
    Li Y; Jiang C; Zheng M; Wang X; Song R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3013-3021. PubMed ID: 33270564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Non-Invasive Ankle Joint Effort Prediction Methods for Use in Neurorehabilitation Using Electromyography and Ultrasound Imaging.
    Zhang Q; Iyer A; Kim K; Sharma N
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):1044-1055. PubMed ID: 32759078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical characteristics of human ankle dorsi- and plantar-flexor muscles. Comparative responses during fatiguing stimulation and recovery.
    Galea V
    Eur J Appl Physiol; 2001 Jul; 85(1-2):130-40. PubMed ID: 11513306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. sEMG Signal Acquisition Strategy towards Hand FES Control.
    Toledo-Peral CL; Gutiérrez-Martínez J; Mercado-Gutiérrez JA; Martín-Vignon-Whaley AI; Vera-Hernández A; Leija-Salas L
    J Healthc Eng; 2018; 2018():2350834. PubMed ID: 29732046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.
    Ibitoye MO; Estigoni EH; Hamzaid NA; Wahab AK; Davis GM
    Sensors (Basel); 2014 Jul; 14(7):12598-622. PubMed ID: 25025551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.