These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34892479)

  • 1. Vigilance Estimating in SSVEP-Based BCI Using Multimodal Signals.
    Wang K; Qiu S; Wei W; Zhang C; He H; Xu M; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5974-5978. PubMed ID: 34892479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MultiModal Vigilance (MMV) dataset during RSVP and SSVEP brain-computer interface tasks.
    Wei W; Wang K; Qiu S; He H
    Sci Data; 2024 Aug; 11(1):867. PubMed ID: 39127752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating EEG-based cross-session and cross-task vigilance estimation in BCI systems.
    Wang K; Qiu S; Wei W; Yi W; He H; Xu M; Jung TP; Ming D
    J Neural Eng; 2023 Sep; 20(5):. PubMed ID: 37611567
    [No Abstract]   [Full Text] [Related]  

  • 4. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface.
    Peng Y; Wang Z; Wong CM; Nan W; Rosa A; Xu P; Wan F; Hu Y
    J Neural Eng; 2020 Jul; 17(4):045006. PubMed ID: 32408272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective 2-D cursor control system using hybrid SSVEP + P300 visual brain computer interface.
    Kapgate D
    Med Biol Eng Comput; 2022 Nov; 60(11):3243-3254. PubMed ID: 36151487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementing a calibration-free SSVEP-based BCI system with 160 targets.
    Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091
    [No Abstract]   [Full Text] [Related]  

  • 12. Learning to control an SSVEP-based BCI speller in naïve subjects.
    Zhihua Tang ; Yijun Wang ; Guoya Dong ; Weihua Pei ; Hongda Chen
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1934-1937. PubMed ID: 29060271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
    Ko LW; Chikara RK; Lee YC; Lin WC
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrastive fine-grained domain adaptation network for EEG-based vigilance estimation.
    Wang K; Wei W; Yi W; Qiu S; He H; Xu M; Ming D
    Neural Netw; 2024 Nov; 179():106617. PubMed ID: 39180976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Calibration-Free Hybrid Approach Combining SSVEP and EOG for Continuous Control.
    Mai X; Sheng X; Shu X; Ding Y; Zhu X; Meng J
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3480-3491. PubMed ID: 37610901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.