These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34892500)

  • 1. Factors affecting the sensitivity to small interaction forces in humans
    Rashid F; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6066-6069. PubMed ID: 34892500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-force human-human hand interactions induce gait changes through sensorimotor engagement instead of direct mechanical effects.
    Wu M; Hackney ME; Ting LH
    Sci Rep; 2024 Feb; 14(1):3614. PubMed ID: 38351215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropy in the haptic perception of force direction and magnitude.
    van Beek FE; Tiest WM; Kappers AM
    IEEE Trans Haptics; 2013; 6(4):399-407. PubMed ID: 24808392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of the Human Arm Stiffness Estimation Method Developed for Overground Physical Interaction Experiments.
    Kamma TK; Regmi S; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small forces that differ with prior motor experience can communicate movement goals during human-human physical interaction.
    Sawers A; Bhattacharjee T; McKay JL; Hackney ME; Kemp CC; Ting LH
    J Neuroeng Rehabil; 2017 Jan; 14(1):8. PubMed ID: 28143521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive control of stiffness to stabilize hand position with large loads.
    Franklin DW; Milner TE
    Exp Brain Res; 2003 Sep; 152(2):211-20. PubMed ID: 12845511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural force fields of the human arm and their role in generating multijoint movements.
    Shadmehr R; Mussa-Ivaldi FA; Bizzi E
    J Neurosci; 1993 Jan; 13(1):45-62. PubMed ID: 8423483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humans modulate arm stiffness to facilitate motor communication during overground physical human-robot interaction.
    Regmi S; Burns D; Song YS
    Sci Rep; 2022 Nov; 12(1):18767. PubMed ID: 36335247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of geometry and joint stiffness to mechanical stability of the human arm.
    Milner TE
    Exp Brain Res; 2002 Apr; 143(4):515-9. PubMed ID: 11914798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human's Capability to Discriminate Spatial Forces at the Big Toe.
    Hagengruber A; Höppner H; Vogel J
    Front Neurorobot; 2018; 12():13. PubMed ID: 29692718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unintentional changes in the apparent stiffness of the multi-joint limb.
    Zhou T; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Oct; 233(10):2989-3004. PubMed ID: 26169103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of human force control during a constrained arm motion using a force-actuated joystick.
    McIntyre J; Gurfinkel EV; Lipshits MI; Droulez J; Gurfinkel VS
    J Neurophysiol; 1995 Mar; 73(3):1201-22. PubMed ID: 7608766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of finger force direction in the flexion-extension plane.
    Gao F; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2005 Mar; 161(3):307-15. PubMed ID: 15726342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of grip force and load force during arm movements with grasped objects.
    Flanagan JR; Tresilian J; Wing AM
    Neurosci Lett; 1993 Apr; 152(1-2):53-6. PubMed ID: 8515879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the biomechanical constraints on the feedforward control of endpoint stiffness.
    Hu X; Murray WM; Perreault EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4498-501. PubMed ID: 21095780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence.
    Levin O; Wenderoth N; Steyvers M; Swinnen SP
    Exp Brain Res; 2003 Jan; 148(1):62-76. PubMed ID: 12478397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetries of bilateral isometric force matching with movement intention and unilateral fatigue.
    Gueugnon M; Torre K; Mottet D; Bonnetblanc F
    Exp Brain Res; 2014 Jun; 232(6):1699-706. PubMed ID: 24553753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.