BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34892528)

  • 1. An Affective Interaction System using Virtual Reality and Brain-Computer Interface.
    Chin ZY; Zhang Z; Wang C; Ang KK
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6183-6186. PubMed ID: 34892528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality.
    Kim S; Lee S; Kang H; Kim S; Ahn M
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Head Mounted Display Bio-Signals Pad System for Emotion Recognition.
    Wan C; Chen D; Huang Z; Luo X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emotion recognition from single-trial EEG based on kernel Fisher's emotion pattern and imbalanced quasiconformal kernel support vector machine.
    Liu YH; Wu CT; Cheng WT; Hsiao YT; Chen PM; Teng JT
    Sensors (Basel); 2014 Jul; 14(8):13361-88. PubMed ID: 25061837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Based Identification of Emotional Neural State Evoked by Virtual Environment Interaction.
    Jung D; Choi J; Kim J; Cho S; Han S
    Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.
    Taran S; Bajaj V
    Comput Methods Programs Biomed; 2019 May; 173():157-165. PubMed ID: 31046991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality.
    Wen D; Liang B; Zhou Y; Chen H; Jung TP
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience.
    Hofmann SM; Klotzsche F; Mariola A; Nikulin V; Villringer A; Gaebler M
    Elife; 2021 Oct; 10():. PubMed ID: 34708689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Step towards EEG-based brain computer interface for autism intervention.
    Fan J; Wade JW; Bian D; Key AP; Warren ZE; Mion LC; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3767-70. PubMed ID: 26737113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VR-enabled portable brain-computer interfaces via wireless soft bioelectronics.
    Mahmood M; Kim N; Mahmood M; Kim H; Kim H; Rodeheaver N; Sang M; Yu KJ; Yeo WH
    Biosens Bioelectron; 2022 Aug; 210():114333. PubMed ID: 35525171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embodiment Is Related to Better Performance on a Brain-Computer Interface in Immersive Virtual Reality: A Pilot Study.
    Juliano JM; Spicer RP; Vourvopoulos A; Lefebvre S; Jann K; Ard T; Santarnecchi E; Krum DM; Liew SL
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface.
    Craik A; González-España JJ; Alamir A; Edquilang D; Wong S; Sánchez Rodríguez L; Feng J; Francisco GE; Contreras-Vidal JL
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447780
    [No Abstract]   [Full Text] [Related]  

  • 18. Motor imagery EEG classification based on ensemble support vector learning.
    Luo J; Gao X; Zhu X; Wang B; Lu N; Wang J
    Comput Methods Programs Biomed; 2020 Sep; 193():105464. PubMed ID: 32283387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection.
    Li Z; Qiu L; Li R; He Z; Xiao J; Liang Y; Wang F; Pan J
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.