These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34892530)

  • 1. Exploiting Spherical Projections To Generate Human-Like Wrist Pointing Movements.
    Tiseo C; Charitos SR; Mistry M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6192-6197. PubMed ID: 34892530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators.
    Tommasino P; Campolo D
    Front Neurorobot; 2017; 11():65. PubMed ID: 29249954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Human Wrist Stiffness during a Tooling Task.
    Phan GH; Hansen C; Tommasino P; Budhota A; Mohan DM; Hussain A; Burdet E; Campolo D
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Leap Motion Controller's Performance in Measuring Wrist Rehabilitation Tasks Using an Industrial Robot Arm Reference.
    Gonçalves RS; Souza MRSB; Carbone G
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal-distal differences in movement smoothness reflect differences in biomechanics.
    Salmond LH; Davidson AD; Charles SK
    J Neurophysiol; 2017 Mar; 117(3):1239-1257. PubMed ID: 28003410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness, not inertial coupling, determines path curvature of wrist motions.
    Charles SK; Hogan N
    J Neurophysiol; 2012 Feb; 107(4):1230-40. PubMed ID: 22131378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spherical Wrist Manipulator Local Planner for Redundant Tasks in Collaborative Environments.
    Chiurazzi M; Alcaide JO; Diodato A; Menciassi A; Ciuti G
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of robot dynamics on smoothness during wrist pointing.
    Erwin A; Pezent E; Bradley J; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():597-602. PubMed ID: 28813885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of wrist rotations.
    Charles SK; Hogan N
    J Biomech; 2011 Feb; 44(4):614-21. PubMed ID: 21130996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint-Specific Play Controller for Upper Extremity Therapy: Feasibility Study in Children With Wrist Impairment.
    Wilcox BJ; Wilkins MM; Basseches B; Schwartz JB; Kerman K; Trask C; Brideau H; Crisco JJ
    Phys Ther; 2016 Nov; 96(11):1773-1781. PubMed ID: 27197824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting upper-limb functional principal components for human-like motion generation of anthropomorphic robots.
    Averta G; Della Santina C; Valenza G; Bicchi A; Bianchi M
    J Neuroeng Rehabil; 2020 May; 17(1):63. PubMed ID: 32404174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of normative angular joint kinematics during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Chapman CS; Pilarski PM; Hebert JS; Vette AH
    Gait Posture; 2019 Mar; 69():176-186. PubMed ID: 30769260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Design and Control Analysis of 2-DOF Spherical Wrist].
    Zhou F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 Sep; 41(5):334-337. PubMed ID: 29862719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms.
    Soltani-Zarrin R; Zeiaee A; Langari R; Robson N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():753-758. PubMed ID: 28813910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marker placement to describe the wrist movements during activities of daily living in cyclical tasks.
    Murgia A; Kyberd PJ; Chappell PH; Light CM
    Clin Biomech (Bristol, Avon); 2004 Mar; 19(3):248-54. PubMed ID: 15003339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion analysis of the wrist joints in patients with rheumatoid arthritis.
    Yayama T; Kobayashi S; Kokubo Y; Inukai T; Mizukami Y; Kubota M; Ishikawa J; Baba H; Minami A
    Mod Rheumatol; 2007; 17(4):322-6. PubMed ID: 17694267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of tracking marker locations on three-dimensional wrist kinematics.
    Turner J; Forrester SE; Mears AC; Roberts JR
    J Sci Med Sport; 2020 Oct; 23(10):985-990. PubMed ID: 32284293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.