BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34892584)

  • 21. Single-Step Fabrication Method toward 3D Printing Composite Diamond-Titanium Interfaces for Neural Applications.
    Mani N; Ahnood A; Peng D; Tong W; Booth M; Jones A; Murdoch B; Tran N; Houshyar S; Fox K
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31474-31484. PubMed ID: 34192459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Block Copolymer Elastomers for Stretchable Electronics.
    You I; Kong M; Jeong U
    Acc Chem Res; 2019 Jan; 52(1):63-72. PubMed ID: 30586291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.
    Jiang J; Bao B; Li M; Sun J; Zhang C; Li Y; Li F; Yao X; Song Y
    Adv Mater; 2016 Feb; 28(7):1420-6. PubMed ID: 26643356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bringing Electrochemical Three-Dimensional Printing to the Nanoscale.
    Hengsteler J; Mandal B; van Nisselroy C; Lau GPS; Schlotter T; Zambelli T; Momotenko D
    Nano Lett; 2021 Nov; 21(21):9093-9101. PubMed ID: 34699726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesized biocompatible and conductive ink for 3D printing of flexible electronics.
    Kazemzadeh Farizhandi AA; Khalajabadi SZ; Krishnadoss V; Noshadi I
    J Mech Behav Biomed Mater; 2020 Oct; 110():103960. PubMed ID: 32957251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D printing for rapid prototyping of low-Z/density ionization chamber arrays.
    Brivio D; Naumann L; Albert S; Sajo E; Zygmanski P
    Med Phys; 2019 Dec; 46(12):5770-5779. PubMed ID: 31571224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stretchable tracks for laser-machined neural electrode arrays.
    Schuettler M; Pfau D; Ordonez JS; Henle C; Woias P; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1612-5. PubMed ID: 19964006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-Inspired Chemical Fabrication of Stretchable Transparent Electrodes.
    Yu Y; Zhang Y; Li K; Yan C; Zheng Z
    Small; 2015 Jul; 11(28):3444-9. PubMed ID: 25786920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.
    Duan S; Yang K; Wang Z; Chen M; Zhang L; Zhang H; Li C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2187-92. PubMed ID: 26713456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electric conductivity measurements employing 3D printed electrodes and cells.
    Vivaldi F; Sebechlebská T; Vaněčková E; Biagini D; Bonini A; Kolivoška V
    Anal Chim Acta; 2022 Apr; 1203():339600. PubMed ID: 35361422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces.
    Afanasenkau D; Kalinina D; Lyakhovetskii V; Tondera C; Gorsky O; Moosavi S; Pavlova N; Merkulyeva N; Kalueff AV; Minev IR; Musienko P
    Nat Biomed Eng; 2020 Oct; 4(10):1010-1022. PubMed ID: 32958898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication.
    Meloni GN; Bertotti M
    PLoS One; 2017; 12(7):e0182000. PubMed ID: 28753638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of conducting polymers.
    Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X
    Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors.
    Bai S; Zhang S; Zhou W; Ma D; Ma Y; Joshi P; Hu A
    Nanomicro Lett; 2017; 9(4):42. PubMed ID: 30393737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
    Cui Z; Han Y; Huang Q; Dong J; Zhu Y
    Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Characteristics of Multipurpose Transparent Polyurethane Film.
    Nam HJ; Choa SH; Park SH
    J Nanosci Nanotechnol; 2021 Oct; 21(10):5222-5228. PubMed ID: 33875110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanically robust silver nanowire-polydimethylsiloxane electrode based on facile transfer printing techniques for wearable displays.
    Liang FC; Chang YW; Kuo CC; Cho CJ; Jiang DH; Jhuang FC; Rwei SP; Borsali R
    Nanoscale; 2019 Jan; 11(4):1520-1530. PubMed ID: 30620020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.