BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 34892609)

  • 1. An extraocular electrical stimulation approach to slow down the progression of retinal degeneration in an animal model.
    Gonzalez Calle A; Paknahad J; Pollalis D; Kosta P; Thomas B; Tew BY; Salhia B; Louie S; Lazzi G; Humayun M
    Sci Rep; 2023 Sep; 13(1):15924. PubMed ID: 37741821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Computational Model Simulates Light-Evoked Responses in the Retinal Cone Pathway.
    Iseri E; Kosta P; Paknahad J; Bouteiller JC; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4482-4486. PubMed ID: 34892214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing Electrical Stimulation Efficacy in Degenerated Retina: Stimulus Waveform Design in a Multiscale Computational Model.
    Loizos K; Marc R; Humayun M; Anderson JR; Jones BW; Lazzi G
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1111-1120. PubMed ID: 29877835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the Contribution of Vertical Processing Layers of the Retina to White-Noise Electrical Stimulation Responses.
    Zha M; Muralidharan M; Ly K; Guo T; Von Wegner F; Shabani H; Hosseinzadeh Z; Lovell NH; Rathbun DL; Shivdasani MN
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On optimal coupling of the 'electronic photoreceptors' into the degenerate retina.
    Werginz P; Wang BY; Chen ZC; Palanker D
    J Neural Eng; 2020 Jul; 17(4):045008. PubMed ID: 32613948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The direct influence of retinal degeneration on electrical stimulation efficacy: Significant implications for retinal prostheses.
    Ly K; Lovell NH; Muralidharan M; Italiano ML; Tsai D; Shivdasani MN; Guo T; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms.
    Freeman DK; Jeng JS; Kelly SK; Hartveit E; Fried SI
    J Neural Eng; 2011 Aug; 8(4):046005. PubMed ID: 21628768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of K+ conductances in cat retinal ganglion cells during the period of activity-mediated refinements in retinofugal pathways.
    Skaliora I; Robinson DW; Scobey RP; Chalupa LM
    Eur J Neurosci; 1995 Jul; 7(7):1558-68. PubMed ID: 7551182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics.
    Oesterle J; Behrens C; Schröder C; Hermann T; Euler T; Franke K; Smith RG; Zeck G; Berens P
    Elife; 2020 Oct; 9():. PubMed ID: 33107821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Author Correction: An extraocular electrical stimulation approach to slow down the progression of retinal degeneration in an animal model.
    Gonzalez Calle A; Paknahad J; Pollalis D; Kosta P; Thomas B; Tew BY; Salhia B; Louie S; Lazzi G; Humayun M
    Sci Rep; 2023 Oct; 13(1):18120. PubMed ID: 37872269
    [No Abstract]   [Full Text] [Related]  

  • 11. Impact of Retinal Degeneration on Response of ON and OFF Cone Bipolar Cells to Electrical Stimulation.
    Farzad S; Kosta P; Iseri E; Walston ST; Bouteiller JC; Pfeiffer RL; Sigulinsky CL; Yang JH; Garcia JC; Anderson JR; Jones BW; Lazzi G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2424-2437. PubMed ID: 37186528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of Neural Plasticity in Retinal Prosthesis.
    Caravaca-Rodriguez D; Gaytan SP; Suaning GJ; Barriga-Rivera A
    Invest Ophthalmol Vis Sci; 2022 Oct; 63(11):11. PubMed ID: 36251317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Activation of Retinal Ganglion Cell Subtypes Through Targeted Electrical Stimulation Parameters.
    Paknahad J; Humayun M; Lazzi G
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():350-359. PubMed ID: 35130164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling ON Cone Bipolar Cells for Electrical Stimulation.
    Paknahad J; Kosta P; Iseri E; Farzad S; Bouteiller JC; Humayun MS; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6547-6550. PubMed ID: 34892609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying activation of retinal bipolar cells through targeted electrical stimulation: a computational study.
    Paknahad J; Kosta P; Bouteiller JC; Humayun MS; Lazzi G
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34826830
    [No Abstract]   [Full Text] [Related]  

  • 16. Responsiveness of Retinal Ganglion Cells Through Frequency Modulation of Electrical Stimulation: A Computational Modeling Study
    Paknahad J; Loizos K; Humayun M; Lazzi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3393-3398. PubMed ID: 33018732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patch clamp recordings of retinal bipolar cells in response to extracellular electrical stimulation in wholemount mouse retina.
    Walston ST; Chow RH; Weiland JD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3363-6. PubMed ID: 26737013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice.
    Margalit E; Babai N; Luo J; Thoreson WB
    Vis Neurosci; 2011 Mar; 28(2):145-54. PubMed ID: 21463541
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.