These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34892625)

  • 21. Near Perfect Neural Critic from Motor Cortical Activity Toward an Autonomously Updating Brain Machine Interface.
    An J; Yadav T; Ahmadi MB; Tarigoppula VSA; Francis JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():73-76. PubMed ID: 30440344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Agent Reinforcement Learning via Adaptive Kalman Temporal Difference and Successor Representation.
    Salimibeni M; Mohammadi A; Malekzadeh P; Plataniotis KN
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural Decoding Forelimb Trajectory Using Evolutionary Neural Networks with Feedback-Error-Learning Schemes.
    Lin YC; Chou C; Yang SH; Lai HY; Lo YC; Chen YY
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2539-2542. PubMed ID: 30440925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The value-complexity trade-off for reinforcement learning based brain-computer interfaces.
    Levi-Aharoni H; Tishby N
    J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feature extraction and unsupervised classification of neural population reward signals for reinforcement based BMI.
    Prins NW; Geng S; Pohlmeyer EA; Mahmoudi B; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5250-3. PubMed ID: 24110920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive offset correction for intracortical brain-computer interfaces.
    Homer ML; Perge JA; Black MJ; Harrison MT; Cash SS; Hochberg LR
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):239-48. PubMed ID: 24196868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking Fast Neural Adaptation by Globally Adaptive Point Process Estimation for Brain-Machine Interface.
    Chen S; Zhang X; Shen X; Huang Y; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1690-1700. PubMed ID: 34410924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement Learning in Neurocritical and Neurosurgical Care: Principles and Possible Applications.
    Liu Y; Qiao N; Altinel Y
    Comput Math Methods Med; 2021; 2021():6657119. PubMed ID: 33680069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating the role of firing-rate normalization and dimensionality reduction in brain-machine interface robustness.
    Kao JC; Nuyujukian P; Stavisky S; Ryu SI; Ganguli S; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():293-8. PubMed ID: 24109682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces.
    Prins NW; Sanchez JC; Prasad A
    Front Neurosci; 2014; 8():111. PubMed ID: 24904257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimal calibration of the learning rate in closed-loop adaptive brain-machine interfaces.
    Hsieh HL; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1667-70. PubMed ID: 26736596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intention estimation in brain-machine interfaces.
    Fan JM; Nuyujukian P; Kao JC; Chestek CA; Ryu SI; Shenoy KV
    J Neural Eng; 2014 Feb; 11(1):016004. PubMed ID: 24654266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.