These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34892632)
1. In Vitro Electrochemical Properties of Titanium Nitride Neural Stimulating and Recording Electrodes as a Function of Film Thickness and Voltage Biasing. Abbott JR; Joshi-Imre A; Cogan SF Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6647-6650. PubMed ID: 34892632 [TBL] [Abstract][Full Text] [Related]
2. Influence of fibrous encapsulation on electro-chemical properties of TiN electrodes. Meijs S; Fjorback M; Jensen C; Sørensen S; Rechendorff K; Rijkhoff NJ Med Eng Phys; 2016 May; 38(5):468-76. PubMed ID: 26997562 [TBL] [Abstract][Full Text] [Related]
3. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area. Harris AR J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255 [No Abstract] [Full Text] [Related]
4. Electrochemical Roughening of Thin-Film Platinum Macro and Microelectrodes. Ivanovskaya AN; Belle AM; Yorita A; Qian F; Chen S; Tooker A; Lozada RG; Dahlquist D; Tolosa V J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305526 [TBL] [Abstract][Full Text] [Related]
5. Diamond/Porous Titanium Nitride Electrodes With Superior Electrochemical Performance for Neural Interfacing. Meijs S; McDonald M; Sørensen S; Rechendorff K; Fekete L; Klimša L; Petrák V; Rijkhoff N; Taylor A; Nesládek M; Pennisi CP Front Bioeng Biotechnol; 2018; 6():171. PubMed ID: 30525031 [TBL] [Abstract][Full Text] [Related]
6. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. Meijs S; Alcaide M; Sørensen C; McDonald M; Sørensen S; Rechendorff K; Gerhardt A; Nesladek M; Rijkhoff NJ; Pennisi CP J Neural Eng; 2016 Oct; 13(5):056011. PubMed ID: 27548023 [TBL] [Abstract][Full Text] [Related]
7. Sputtered ruthenium oxide coatings for neural stimulation and recording electrodes. Chakraborty B; Joshi-Imre A; Maeng J; Cogan SF J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):643-653. PubMed ID: 32945088 [TBL] [Abstract][Full Text] [Related]
8. Voltage biasing, cyclic voltammetry, & electrical impedance spectroscopy for neural interfaces. Wilks SJ; Richner TJ; Brodnick SK; Kipke DR; Williams JC; Otto KJ J Vis Exp; 2012 Feb; (60):. PubMed ID: 22395095 [TBL] [Abstract][Full Text] [Related]
9. Bulk Ti nitride prepared from rutile TiO Canillas M; Moreno B; Carballo-Vila M; Jurado JR; Chinarro E Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():295-301. PubMed ID: 30606535 [TBL] [Abstract][Full Text] [Related]
10. Sputtered iridium oxide films (SIROFs) for low-impedance neural stimulation and recording electrodes. Cogan SF; Plante TD; Ehrlich J Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4153-6. PubMed ID: 17271216 [TBL] [Abstract][Full Text] [Related]
11. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. Weiland JD; Anderson DJ; Humayun MS IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739 [TBL] [Abstract][Full Text] [Related]
12. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy. Norlin A; Pan J; Leygraf C Biomol Eng; 2002 Aug; 19(2-6):67-71. PubMed ID: 12202164 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Impedance Imaging on Conductive Surfaces. Shi Y; Feng G; Li X; Yang X; Ghanim AH; Ruchhoeft P; Jackson D; Mubeen S; Shan X Anal Chem; 2021 Sep; 93(36):12320-12328. PubMed ID: 34460223 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording. Ghazavi A; Maeng J; Black M; Salvi S; Cogan SF J Neural Eng; 2020 Jan; 17(1):016022. PubMed ID: 31665712 [TBL] [Abstract][Full Text] [Related]
15. Charge injection capacity of TiN electrodes for an extended voltage range. Patan M; Shah T; Sahin M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():890-2. PubMed ID: 17946870 [TBL] [Abstract][Full Text] [Related]
16. Chronic neural stimulation with thin-film, iridium oxide electrodes. Weiland JD; Anderson DJ IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262 [TBL] [Abstract][Full Text] [Related]
17. Thin Film Nanocrystalline TiO2 Electrodes: Dependence of Flat Band Potential on pH and Anion Adsorption. Minella M; Maurino V; Minero C; Pelizzetti E J Nanosci Nanotechnol; 2015 May; 15(5):3348-58. PubMed ID: 26504951 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy. Muti M; Erdem A; Caliskan A; Sınag A; Yumak T Colloids Surf B Biointerfaces; 2011 Aug; 86(1):154-7. PubMed ID: 21530186 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study. Meijs S; Fjorback M; Jensen C; Sørensen S; Rechendorff K; Rijkhoff NJ Front Neurosci; 2015; 9():268. PubMed ID: 26300717 [TBL] [Abstract][Full Text] [Related]
20. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes. Meijs S; Sørensen C; Sørensen S; Rechendorff K; Fjorback M; Rijkhoff NJ J Neural Eng; 2016 Apr; 13(2):026011. PubMed ID: 26859879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]