These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34892649)

  • 1. Proprioceptive Gaming: Making Finger Sensation Training Intense and Engaging with the P-Pong Game and PINKIE Robot.
    Reinsdorf DS; Mahan EE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6715-6720. PubMed ID: 34892649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotically quantifying finger and ankle proprioception: Role of range, speed, anticipatory errors, and learning.
    Johnson CA; Reinsdorf DS; Reinkensmeyer DJ; Farrens AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.
    Taheri H; Rowe JB; Gardner D; Chan V; Gray K; Bower C; Reinkensmeyer DJ; Wolbrecht ET
    J Neuroeng Rehabil; 2014 Feb; 11():10. PubMed ID: 24495432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted training to improve proprioception does benefit from added vibro-tactile feedback.
    Cuppone A; Squeri V; Semprini M; Konczak J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():258-61. PubMed ID: 26736249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a robotic device to measure age-related decline in finger proprioception.
    Ingemanson ML; Rowe JB; Chan V; Wolbrecht ET; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2016 Jan; 234(1):83-93. PubMed ID: 26378004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robotic test of proprioception within the hemiparetic arm post-stroke.
    Simo L; Botzer L; Ghez C; Scheidt RA
    J Neuroeng Rehabil; 2014 Apr; 11():77. PubMed ID: 24885197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Assisted Training to Improve Proprioception of Wrist.
    Luo S; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():570-576. PubMed ID: 38231807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Arm Movement Detection (AMD) test: a fast robotic test of proprioceptive acuity in the arm.
    Mrotek LA; Bengtson M; Stoeckmann T; Botzer L; Ghez CP; McGuire J; Scheidt RA
    J Neuroeng Rehabil; 2017 Jun; 14(1):64. PubMed ID: 28659156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted Guitar Hero for finger rehabilitation after stroke.
    Taheri H; Rowe JB; Gardner D; Chan V; Reinkensmeyer DJ; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3911-7. PubMed ID: 23366783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proprioceptive Training with Visual Feedback Improves Upper Limb Function in Stroke Patients: A Pilot Study.
    He J; Li C; Lin J; Shu B; Ye B; Wang J; Lin Y; Jia J
    Neural Plast; 2022; 2022():1588090. PubMed ID: 35075359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-aided developmental assessment of wrist proprioception in children.
    Marini F; Squeri V; Morasso P; Campus C; Konczak J; Masia L
    J Neuroeng Rehabil; 2017 Jan; 14(1):3. PubMed ID: 28069028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.
    Elangovan N; Cappello L; Masia L; Aman J; Konczak J
    Sci Rep; 2017 Dec; 7(1):17054. PubMed ID: 29213051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new robot-based proprioceptive training algorithm to induce sensorimotor enhancement in the human wrist.
    Albanese GA; Basile E; Momi E; Zenzeri J
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive strategy for multi-user robotic rehabilitation games.
    Caurin GA; Siqueira AA; Andrade KO; Joaquim RC; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1395-8. PubMed ID: 22254578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatotopic Specificity of Perceptual and Neurophysiological Changes Associated with Visuo-proprioceptive Realignment.
    Mirdamadi JL; Seigel CR; Husch SD; Block HJ
    Cereb Cortex; 2022 Mar; 32(6):1184-1199. PubMed ID: 34424950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Preliminary Evaluation of a Robot-assisted Assessment-driven Finger Proprioception Therapy.
    Zbytniewska-Megret M; Salzmann C; Ranzani R; Kanzler CM; Gassert R; Liepert J; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability, validity, and clinical feasibility of a rapid and objective assessment of post-stroke deficits in hand proprioception.
    Rinderknecht MD; Lambercy O; Raible V; Büsching I; Sehle A; Liepert J; Gassert R
    J Neuroeng Rehabil; 2018 Jun; 15(1):47. PubMed ID: 29880003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.