BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34892667)

  • 1. Towards a Self-Powered ECG and PPG Sensing Wearable Device.
    Zhao L; Jia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6791-6794. PubMed ID: 34892667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-power high-sensitivity analog front-end for PPG sensor.
    Binghui Lin ; Atef M; Guoxing Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():861-864. PubMed ID: 29060008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 14.85 µW Analog Front-End for Photoplethysmography Acquisition with 142-dBΩ Gain and 64.2-pA
    Lin B; Atef M; Wang G
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wireless Multimodal Physiological Monitoring ASIC for Animal Health Monitoring Injectable Devices.
    Zhao L; Stephany RG; Han Y; Ahmmed P; Huang TP; Bozkurt A; Jia Y
    IEEE Trans Biomed Circuits Syst; 2024 Mar; PP():. PubMed ID: 38437072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Energy-Efficient Algorithm for Wearable Electrocardiogram Signal Processing in Ubiquitous Healthcare Applications.
    Sodhro AH; Sangaiah AK; Sodhro GH; Lohano S; Pirbhulal S
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29558433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Trimodal Wireless Implantable Neural Interface System-on-Chip.
    Jia Y; Guler U; Lai YP; Gong Y; Weber A; Li W; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1207-1217. PubMed ID: 33180731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling.
    Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design of CMOS general-purpose analog front-end circuit with tunable gain and bandwidth for biopotential signal recording systems.
    Chen WM; Yang WC; Tsai TY; Chiueh H; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4784-7. PubMed ID: 22255408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 0.8 V, 14.76 nVrms, Multiplexer-Based AFE for Wearable Devices Using 45 nm CMOS Techniques.
    Tamilarasan E; Duraisamy GNR; Elangovan MK; Sarasam AST
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 1.02 μW Battery-Less, Continuous Sensing and Post-Processing SiP for Wearable Applications.
    Lukas CJ; Yahya FB; Breiholz J; Roy A; Chen X; Patel HN; Liu N; Kosari A; Li S; Akella Kamakshi D; Ayorinde O; Wentzloff DD; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):271-281. PubMed ID: 30676976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 36 μW 1.1 mm2 Reconfigurable Analog Front-End for Cardiovascular and Respiratory Signals Recording.
    Xu J; Konijnenburg M; Ha H; van Wegberg R; Song S; Blanco-Almazan D; Van Hoof C; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):774-783. PubMed ID: 29993987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography.
    Hina A; Saadeh W
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):504-515. PubMed ID: 32149655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Batteryless Motion-Adaptive Heartbeat Detection System-on-Chip Powered by Human Body Heat.
    Bose S; Shen B; Johnston ML
    IEEE J Solid-State Circuits; 2020 Nov; 55(11):2902-2913. PubMed ID: 33311721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications.
    Lin Q; Xu J; Song S; Breeschoten A; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):800-810. PubMed ID: 32746343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal filter characterization for photoplethysmography-based pulse rate and pulse power spectrum estimation.
    Cassani R; Tiwari A; Falk TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():914-917. PubMed ID: 33018133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment.
    Vandecasteele K; De Cooman T; Gu Y; Cleeren E; Claes K; Paesschen WV; Huffel SV; Hunyadi B
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.