BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34892740)

  • 1. Bathroom activities monitoring for older adults by a wrist-mounted accelerometer using a hybrid deep learning model.
    Shang M; Zhang Y; Ali Amer AY; D'Haeseleer I; Vanrumste B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7112-7115. PubMed ID: 34892740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor.
    Rashid N; Chen L; Dautta M; Jimenez A; Tseng P; Al Faruque MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2374-2377. PubMed ID: 34891759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based classification with improved time resolution for physical activities of children.
    Jang Y; Kim S; Kim K; Lee D
    PeerJ; 2018; 6():e5764. PubMed ID: 30364555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal.
    Masood F; Sharma M; Mand D; Nesathurai S; Simmons HA; Brunner K; Schalk DR; Sledge JB; Abdullah HA
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning for Classifying Physical Activities from Accelerometer Data.
    Nunavath V; Johansen S; Johannessen TS; Jiao L; Hansen BH; Berntsen S; Goodwin M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor.
    Rashid N; Chen L; Dautta M; Jimenez A; Tseng P; Faruque MAA
    ArXiv; 2021 Aug; ():. PubMed ID: 34373840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry.
    Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated classification of nasal polyps in endoscopy video-frames using handcrafted and CNN features.
    Ay B; Turker C; Emre E; Ay K; Aydin G
    Comput Biol Med; 2022 Aug; 147():105725. PubMed ID: 35716434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I
    Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Amharic News Categorization Using Deep Learning Models.
    Endalie D; Haile G
    Comput Intell Neurosci; 2021; 2021():3774607. PubMed ID: 34354742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNN based approach for activity recognition using a wrist-worn accelerometer.
    Panwar M; Dyuthi SR; Chandra Prakash K; Biswas D; Acharyya A; Maharatna K; Gautam A; Naik GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2438-2441. PubMed ID: 29060391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosis and classification of cancer using hybrid model based on ReliefF and convolutional neural network.
    Kilicarslan S; Adem K; Celik M
    Med Hypotheses; 2020 Apr; 137():109577. PubMed ID: 31991364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.