These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 34892762)
1. Development of muscle connection components for implantable power generation system Sahara G; Yamada A; Inoue Y; Shiraishi Y; Hijikata W; Fukaya A; Yambe T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7206-7210. PubMed ID: 34892762 [TBL] [Abstract][Full Text] [Related]
2. Implantable power generation system utilizing muscle contractions excited by electrical stimulation. Sahara G; Hijikata W; Tomioka K; Shinshi T Proc Inst Mech Eng H; 2016 Jun; 230(6):569-78. PubMed ID: 27006422 [TBL] [Abstract][Full Text] [Related]
3. Development of a contactless energy harvesting system driven by contraction of skeletal muscle for implantable medical devices. Mochida T; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4648-4652. PubMed ID: 30441387 [TBL] [Abstract][Full Text] [Related]
4. In vivo demonstration of a self-sustaining, implantable, stimulated-muscle-powered piezoelectric generator prototype. Lewandowski BE; Kilgore KL; Gustafson KJ Ann Biomed Eng; 2009 Nov; 37(11):2390-401. PubMed ID: 19657742 [TBL] [Abstract][Full Text] [Related]
5. A new skeletal muscle linear-pull energy convertor as a power source for prosthetic circulatory support devices [corrected]. Farrar DJ; Hill JD J Heart Lung Transplant; 1992; 11(5):S341-50. PubMed ID: 1420227 [TBL] [Abstract][Full Text] [Related]
6. Design optimization of contactless generator for implantable energy harvesting system utilizing electrically-stimulated muscle. Mochida T; Hijikata W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():358-363. PubMed ID: 31945915 [TBL] [Abstract][Full Text] [Related]
7. Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power. Lewandowski BE; Kilgore KL; Gustafson KJ Ann Biomed Eng; 2007 Apr; 35(4):631-41. PubMed ID: 17295066 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic devices for construction of contractile skeletal muscle microtissues. Shimizu K; Araki H; Sakata K; Tonomura W; Hashida M; Konishi S J Biosci Bioeng; 2015 Feb; 119(2):212-6. PubMed ID: 25085533 [TBL] [Abstract][Full Text] [Related]
10. The value of continuous electrical muscle stimulation using a completely implantable system in the preservation of muscle function following motor nerve injury and repair: an experimental study. Williams HB Microsurgery; 1996; 17(11):589-96. PubMed ID: 9514517 [TBL] [Abstract][Full Text] [Related]
11. An implantable device for stimulation of denervated muscles in rats. Dennis RG; Dow DE; Faulkner JA Med Eng Phys; 2003 Apr; 25(3):239-53. PubMed ID: 12589722 [TBL] [Abstract][Full Text] [Related]
12. Development of a Closed-Loop Stimulator for Laryngeal Reanimation: Part 2. Device Testing in the Canine Model of Laryngeal Paralysis. Heaton JT; Kobler JB; Otten DM; Hillman RE; Zeitels SM Ann Otol Rhinol Laryngol; 2019 Mar; 128(3_suppl):53S-70S. PubMed ID: 30843434 [TBL] [Abstract][Full Text] [Related]
13. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels. Linnamo V; Strojnik V; Komi PV Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102 [TBL] [Abstract][Full Text] [Related]
14. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics. Zoladz JA; Gladden LB; Hogan MC; Nieckarz Z; Grassi B J Appl Physiol (1985); 2008 Aug; 105(2):575-80. PubMed ID: 18483168 [TBL] [Abstract][Full Text] [Related]
15. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources. Chen FB; Budgett DM; Sun Y; Malpas S; McCormick D; Freestone PS IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):28-34. PubMed ID: 27542183 [TBL] [Abstract][Full Text] [Related]
16. Effects of regional stimulation using a miniature stimulator implanted in feline posterior biceps femoris. Cameron T; Richmond FJ; Loeb GE IEEE Trans Biomed Eng; 1998 Aug; 45(8):1036-43. PubMed ID: 9691578 [TBL] [Abstract][Full Text] [Related]
17. Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells. Marotta M; Bragós R; Gómez-Foix AM Biotechniques; 2004 Jan; 36(1):68-73. PubMed ID: 14740487 [TBL] [Abstract][Full Text] [Related]
18. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres. Coupland ME; Ranatunga KW J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915 [TBL] [Abstract][Full Text] [Related]
19. Region specificity of rectus femoris muscle for force vectors in vivo. Hagio S; Nagata K; Kouzaki M J Biomech; 2012 Jan; 45(1):179-82. PubMed ID: 22030124 [TBL] [Abstract][Full Text] [Related]
20. Ex vivo evaluation of a roller screw linear muscle actuator for an implantable ventricular assist device using trained and untrained latissimus dorsi muscles. Sasaki Y; Chikazawa G; Nogawa M; Nishida H; Koyanagi H; Takatani S Artif Organs; 1999 Mar; 23(3):262-7. PubMed ID: 10198718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]