These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34893006)

  • 21. The sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis.
    Ma Y; Qiao J; Liu W; Wan Z; Wang X; Calderone R; Li R
    Infect Immun; 2008 Apr; 76(4):1695-701. PubMed ID: 18227163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae.
    Boisnard S; Ruprich-Robert G; Florent M; Da Silva B; Chapeland-Leclerc F; Papon N
    Yeast; 2008 Nov; 25(11):849-59. PubMed ID: 19061190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway.
    Román E; Correia I; Prieto D; Alonso R; Pla J
    Int Microbiol; 2020 Jan; 23(1):23-29. PubMed ID: 30875035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress-Activated Protein Kinases in Human Fungal Pathogens.
    Day AM; Quinn J
    Front Cell Infect Microbiol; 2019; 9():261. PubMed ID: 31380304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in
    de Assis LJ; Manfiolli A; Mattos E; Fabri JHTM; Malavazi I; Jacobsen ID; Brock M; Cramer RA; Thammahong A; Hagiwara D; Ries LNA; Goldman GH
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538182
    [No Abstract]   [Full Text] [Related]  

  • 26. Systems Level Analysis of the Yeast Osmo-Stat.
    Talemi SR; Tiger CF; Andersson M; Babazadeh R; Welkenhuysen N; Klipp E; Hohmann S; Schaber J
    Sci Rep; 2016 Aug; 6():30950. PubMed ID: 27515486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae.
    O'Rourke SM; Herskowitz I
    Genes Dev; 1998 Sep; 12(18):2874-86. PubMed ID: 9744864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High osmolarity glycerol response PtcB phosphatase is important for Aspergillus fumigatus virulence.
    Winkelströter LK; Bom VL; de Castro PA; Ramalho LN; Goldman MH; Brown NA; Rajendran R; Ramage G; Bovier E; Dos Reis TF; Savoldi M; Hagiwara D; Goldman GH
    Mol Microbiol; 2015 Apr; 96(1):42-54. PubMed ID: 25597841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae.
    Dexter JP; Xu P; Gunawardena J; McClean MN
    BMC Syst Biol; 2015 Mar; 9():17. PubMed ID: 25888817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway.
    Albertyn J; Hohmann S; Thevelein JM; Prior BA
    Mol Cell Biol; 1994 Jun; 14(6):4135-44. PubMed ID: 8196651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus.
    Hagiwara D; Takahashi-Nakaguchi A; Toyotome T; Yoshimi A; Abe K; Kamei K; Gonoi T; Kawamoto S
    PLoS One; 2013; 8(12):e80881. PubMed ID: 24312504
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissection of the HOG pathway activated by hydrogen peroxide in Saccharomyces cerevisiae.
    Lee YM; Kim E; An J; Lee Y; Choi E; Choi W; Moon E; Kim W
    Environ Microbiol; 2017 Feb; 19(2):584-597. PubMed ID: 27554843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi.
    Leach MD; Brown AJ
    Eukaryot Cell; 2012 Feb; 11(2):98-108. PubMed ID: 22158711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High osmolarity glycerol (HOG) pathway-induced phosphorylation and activation of 6-phosphofructo-2-kinase are essential for glycerol accumulation and yeast cell proliferation under hyperosmotic stress.
    Dihazi H; Kessler R; Eschrich K
    J Biol Chem; 2004 Jun; 279(23):23961-8. PubMed ID: 15037628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The HOG signal transduction pathway in the halophilic fungus Wallemia ichthyophaga: identification and characterisation of MAP kinases WiHog1A and WiHog1B.
    Konte T; Plemenitas A
    Extremophiles; 2013 Jul; 17(4):623-36. PubMed ID: 23712906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sphingolipids regulate the yeast high-osmolarity glycerol response pathway.
    Tanigawa M; Kihara A; Terashima M; Takahara T; Maeda T
    Mol Cell Biol; 2012 Jul; 32(14):2861-70. PubMed ID: 22586268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vacuolar H+-ATPase works in parallel with the HOG pathway to adapt Saccharomyces cerevisiae cells to osmotic stress.
    Li SC; Diakov TT; Rizzo JM; Kane PM
    Eukaryot Cell; 2012 Mar; 11(3):282-91. PubMed ID: 22210831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae.
    Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I
    J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osmotic adaptation in yeast--control of the yeast osmolyte system.
    Hohmann S
    Int Rev Cytol; 2002; 215():149-87. PubMed ID: 11952227
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.
    Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z
    Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.