These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34893257)
1. Swelling-based preparation of polypropylene nanocomposite with non-functionalized cellulose nanofibrils. Kim DW; Han S; Lee H; Shin J; Choi SQ Carbohydr Polym; 2022 Feb; 277():118847. PubMed ID: 34893257 [TBL] [Abstract][Full Text] [Related]
2. Nano-dispersed cellulose nanofibrils-PMMA composite from pickering emulsion with tunable interfacial tensions. Kim DW; Shin J; Choi SQ Carbohydr Polym; 2020 Nov; 247():116762. PubMed ID: 32829874 [TBL] [Abstract][Full Text] [Related]
3. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
4. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171 [TBL] [Abstract][Full Text] [Related]
5. Cellulose nanofibrils reinforced xylan-alginate composites: Mechanical, thermal and barrier properties. Naidu DS; John MJ Int J Biol Macromol; 2021 May; 179():448-456. PubMed ID: 33711367 [TBL] [Abstract][Full Text] [Related]
6. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
7. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. Tibolla H; Czaikoski A; Pelissari FM; Menegalli FC; Cunha RL Int J Biol Macromol; 2020 Oct; 161():132-146. PubMed ID: 32522543 [TBL] [Abstract][Full Text] [Related]
8. Well-Defined Polypropylene/Polypropylene-Grafted Silica Nanocomposites: Roles of Number and Molecular Weight of Grafted Chains on Mechanistic Reinforcement. Toyonaga M; Chammingkwan P; Terano M; Taniike T Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974576 [TBL] [Abstract][Full Text] [Related]
9. Transparent and strong polymer nanocomposites generated from Pickering emulsion gels stabilized by cellulose nanofibrils. Liu X; Qi X; Guan Y; He Y; Li S; Liu H; Zhou L; Wei C; Yu C; Chen Y Carbohydr Polym; 2019 Nov; 224():115202. PubMed ID: 31472833 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
11. Controlling Miscibility of the Interphase in Polymer-Grafted Nanocellulose/Cellulose Triacetate Nanocomposites. Soeta H; Fujisawa S; Saito T; Isogai A ACS Omega; 2020 Sep; 5(37):23755-23761. PubMed ID: 32984694 [TBL] [Abstract][Full Text] [Related]
12. Effects of Nanofillers Based on Cetyltrimethylammonium-Modified Clays in a Polypropylene Nanocomposite. Ryu HJ; Hang NT; Rejinold N S; Jeong B; Choi G; Choy JH Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236057 [TBL] [Abstract][Full Text] [Related]
13. Mechanically Strong and Electrically Conductive Polyethylene Oxide/Few-Layer Graphene/Cellulose Nanofibrils Nanocomposite Films. Li M; Xiao M; Wang Q; Zhang J; Xue X; Zhao J; Zhang W; Lu C Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500775 [TBL] [Abstract][Full Text] [Related]
14. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges. Liu H; Liu K; Han X; Xie H; Si C; Liu W; Bae Y Curr Med Chem; 2020; 27(28):4622-4646. PubMed ID: 32124687 [TBL] [Abstract][Full Text] [Related]
15. Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites. Jia Y; Hu C; Shi P; Xu Q; Zhu W; Liu R Int J Biol Macromol; 2020 Oct; 161():223-230. PubMed ID: 32512103 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. El Miri N; El Achaby M; Fihri A; Larzek M; Zahouily M; Abdelouahdi K; Barakat A; Solhy A Carbohydr Polym; 2016 Feb; 137():239-248. PubMed ID: 26686126 [TBL] [Abstract][Full Text] [Related]
17. Alternative modification by grafting in bamboo cellulose nanofibrils: A potential option to improve compatibility and tunable surface energy in bionanocomposites. RodrÃguez-RamÃrez CA; Dufresne A; D'Accorso N; Garcia NL Int J Biol Macromol; 2022 Jun; 211():626-638. PubMed ID: 35561858 [TBL] [Abstract][Full Text] [Related]
18. Dielectric, Mechanical, and Thermal Properties of Crosslinked Polyethylene Nanocomposite with Hybrid Nanofillers. Abdul Razak NI; Yusoff NISM; Ahmad MH; Zulkifli M; Wahit MU Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050316 [TBL] [Abstract][Full Text] [Related]
19. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica. Tanahashi M; Watanabe Y; Lee JC; Takeda K; Fujisawa T J Nanosci Nanotechnol; 2009 Jan; 9(1):539-49. PubMed ID: 19441347 [TBL] [Abstract][Full Text] [Related]
20. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. Xu D; Wang S; Berglund LA; Zhou Q ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]