BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34893299)

  • 21. Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions.
    Kwon GJ; Han SY; Park CW; Park JS; Lee EA; Kim NH; Alle M; Bandi R; Lee SH
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid.
    Najahi A; Tarrés Q; Delgado-Aguilar M; Putaux JL; Boufi S
    Biomacromolecules; 2023 Aug; 24(8):3872-3886. PubMed ID: 37523756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of Super-Hydrophobic Lignocellulosic Nanofibrils Aerogels as Speedy Oil Absorbents.
    Huang B; Jiang J
    Appl Biochem Biotechnol; 2024 Jan; 196(1):220-232. PubMed ID: 37115386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient ultraviolet blocking film on the lignin-rich lignocellulosic nanofibril from bamboo.
    Feng Q; Wang L; Wan Z; Bu X; Deng Q; Li D; Chen C; Xu Z
    Int J Biol Macromol; 2023 Oct; 250():126059. PubMed ID: 37544557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Horticultural Plant Residues as New Source for Lignocellulose Nanofibers Isolation: Application on the Recycling Paperboard Process.
    Bascón-Villegas I; Espinosa E; Sánchez R; Tarrés Q; Pérez-Rodríguez F; Rodríguez A
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: Physicochemical, thermal and rheological characterisation.
    Espinosa E; Sánchez R; González Z; Domínguez-Robles J; Ferrari B; Rodríguez A
    Carbohydr Polym; 2017 Nov; 175():27-37. PubMed ID: 28917866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of Environmentally Friendly Oil- and Water-Resistant Paper Using Holo-Lignocellulosic Nanofibril (LCNF)-Based Composite Coating.
    Wang S; Pei L; Wei J; Xie J; Ji X; Wang Y; Jia P; Jiao Y
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-assisted DES fabrication of lignin-containing cellulose nanofibrils and its derived composite conductive hydrogel.
    Liu W; Jiang C; Li X; Li H; Zhang Y; Huang Y; Chen S; Hou Q
    Carbohydr Polym; 2024 Mar; 328():121741. PubMed ID: 38220351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity.
    Morcillo-Martín R; Espinosa E; Rabasco-Vílchez L; Sanchez LM; de Haro J; Rodríguez A
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin Cellulose Nanofibrils as an Electrochemically Functional Component for High-Performance and Flexible Supercapacitor Electrodes.
    Tanguy NR; Wu H; Nair SS; Lian K; Yan N
    ChemSusChem; 2021 Feb; 14(4):1057-1067. PubMed ID: 33244899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid.
    Bian H; Chen L; Dai H; Zhu JY
    Carbohydr Polym; 2017 Jul; 167():167-176. PubMed ID: 28433151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties.
    Li J; Zhang X; Zhang J; Mi Q; Jia F; Wu J; Yu J; Zhang J
    Carbohydr Polym; 2019 Nov; 223():115057. PubMed ID: 31427002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Lignin-Containing Cellulose Nanofibrils Coated Paper-Based Filters for Effective Oil-Water Separation.
    Mittag A; Rahman MM; Hafez I; Tajvidi M
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-layer oil-resistant food serving containers made using cellulose nanofiber coated wood flour composites.
    Hossain R; Tajvidi M; Bousfield D; Gardner DJ
    Carbohydr Polym; 2021 Sep; 267():118221. PubMed ID: 34119175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.
    Sánchez R; Espinosa E; Domínguez-Robles J; Loaiza JM; Rodríguez A
    Int J Biol Macromol; 2016 Nov; 92():1025-1033. PubMed ID: 27514440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films.
    Wang X; Jia Y; Liu Z; Miao J
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate.
    Park JS; Park CW; Han SY; Lee EA; Cindradewi AW; Kim JK; Kwon GJ; Seo YH; Yoo WJ; Gwon JY; Lee SH
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkaline twin-screw extrusion pretreatment for fermentable sugar production.
    Liu C; van der Heide E; Wang H; Li B; Yu G; Mu X
    Biotechnol Biofuels; 2013; 6():97. PubMed ID: 23834726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement.
    Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements.
    Jahed E; Khaledabad MA; Almasi H; Hasanzadeh R
    Carbohydr Polym; 2017 May; 164():325-338. PubMed ID: 28325333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.