These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34893928)

  • 1. Spatial tuning of translational optic flow responses in hawkmoths of varying body size.
    Grittner R; Baird E; Stöckl A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Mar; 208(2):279-296. PubMed ID: 34893928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth,
    Copley S; Parthasarathy K; Willis MA
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 29967220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How bumblebees use lateral and ventral optic flow cues for position control in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 May; 203(5):343-351. PubMed ID: 28429124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural image statistics in the dorsal and ventral visual field match a switch in flight behaviour of a hawkmoth.
    Bigge R; Pfefferle M; Pfeiffer K; Stöckl A
    Curr Biol; 2021 Mar; 31(6):R280-R281. PubMed ID: 33756136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths.
    Chatterjee P; Prusty AD; Mohan U; Sane SP
    Elife; 2022 Jun; 11():. PubMed ID: 35758646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Tuning to Visual Motion Allows Robust Encoding of Optic Flow in the Dragonfly.
    Evans BJE; O'Carroll DC; Fabian JM; Wiederman SD
    J Neurosci; 2019 Oct; 39(41):8051-8063. PubMed ID: 31481434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.
    Linander N; Dacke M; Baird E
    J Exp Biol; 2015 Apr; 218(Pt 7):1051-9. PubMed ID: 25657205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocturnal insects use optic flow for flight control.
    Baird E; Kreiss E; Wcislo W; Warrant E; Dacke M
    Biol Lett; 2011 Aug; 7(4):499-501. PubMed ID: 21307047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allometric scaling of a superposition eye optimizes sensitivity and acuity in large and small hawkmoths.
    Stöckl A; Grittner R; Taylor G; Rau C; Bodey AJ; Kelber A; Baird E
    Proc Biol Sci; 2022 Jul; 289(1979):20220758. PubMed ID: 35892218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bumblebee flight performance in environments of different proximity.
    Linander N; Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Feb; 202(2):97-103. PubMed ID: 26614094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing damage affects flight kinematics but not flower tracking performance in hummingbird hawkmoths.
    Kihlström K; Aiello B; Warrant E; Sponberg S; Stöckl A
    J Exp Biol; 2021 Feb; 224(Pt 4):. PubMed ID: 33504584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optic flow stabilizes flight in ruby-throated hummingbirds.
    Ros IG; Biewener AA
    J Exp Biol; 2016 Aug; 219(Pt 16):2443-8. PubMed ID: 27284072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of spatial texture in visual control of bumblebee learning flights.
    Linander N; Dacke M; Baird E; Hempel de Ibarra N
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Aug; 204(8):737-745. PubMed ID: 29980840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of self-motion in dynamic fluids: fish do it differently from bees.
    Scholtyssek C; Dacke M; Kröger R; Baird E
    Biol Lett; 2014 May; 10(5):20140279. PubMed ID: 24872463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Budgerigar flight in a varying environment: flight at distinct speeds?
    Schiffner I; Srinivasan MV
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27330173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.
    Dakin R; Fellows TK; Altshuler DL
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8849-54. PubMed ID: 27432982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision-based flight control in the hawkmoth Hyles lineata.
    Windsor SP; Bomphrey RJ; Taylor GK
    J R Soc Interface; 2014 Feb; 11(91):20130921. PubMed ID: 24335557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of optic flow cues on honeybee flight control in wind.
    Baird E; Boeddeker N; Srinivasan MV
    Proc Biol Sci; 2021 Jan; 288(1943):20203051. PubMed ID: 33468001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.