These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34893928)

  • 21. Minimum viewing angle for visually guided ground speed control in bumblebees.
    Baird E; Kornfeldt T; Dacke M
    J Exp Biol; 2010 May; 213(Pt 10):1625-32. PubMed ID: 20435812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optic flow cues guide flight in birds.
    Bhagavatula PS; Claudianos C; Ibbotson MR; Srinivasan MV
    Curr Biol; 2011 Nov; 21(21):1794-9. PubMed ID: 22036184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haemolymph viscosity in hawkmoths and its implications for hovering flight.
    Brasovs A; Palaoro AV; Aprelev P; Beard CE; Adler PH; Kornev KG
    Proc Biol Sci; 2023 Apr; 290(1997):20222185. PubMed ID: 37122259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The roles of vision and antennal mechanoreception in hawkmoth flight control.
    Dahake A; Stöckl AL; Foster JJ; Sane SP; Kelber A
    Elife; 2018 Dec; 7():. PubMed ID: 30526849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatic signals control proboscis movements during hovering flight in the hummingbird hawkmoth Macroglossum stellatarum.
    Goyret J; Kelber A
    PLoS One; 2012; 7(4):e34629. PubMed ID: 22529922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Span efficiency in hawkmoths.
    Henningsson P; Bomphrey RJ
    J R Soc Interface; 2013 Jul; 10(84):20130099. PubMed ID: 23658113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths.
    Windsor SP; Taylor GK
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 28978733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local motion adaptation enhances the representation of spatial structure at EMD arrays.
    Li J; Lindemann JP; Egelhaaf M
    PLoS Comput Biol; 2017 Dec; 13(12):e1005919. PubMed ID: 29281631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flight control of fruit flies: dynamic response to optic flow and headwind.
    Lawson KKK; Srinivasan MV
    J Exp Biol; 2017 Jun; 220(Pt 11):2005-2016. PubMed ID: 28314748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial Encoding of Translational Optic Flow in Planar Scenes by Elementary Motion Detector Arrays.
    Lecoeur J; Baird E; Floreano D
    Sci Rep; 2018 Apr; 8(1):5821. PubMed ID: 29643402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptations for nocturnal and diurnal vision in the hawkmoth lamina.
    Stöckl AL; Ribi WA; Warrant EJ
    J Comp Neurol; 2016 Jan; 524(1):160-75. PubMed ID: 26100612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.).
    Barron A; Srinivasan MV
    J Exp Biol; 2006 Mar; 209(Pt 5):978-84. PubMed ID: 16481586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
    Kern R; Boeddeker N; Dittmar L; Egelhaaf M
    J Exp Biol; 2012 Jul; 215(Pt 14):2501-14. PubMed ID: 22723490
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct Evidence for Vision-based Control of Flight Speed in Budgerigars.
    Schiffner I; Srinivasan MV
    Sci Rep; 2015 Jun; 5():10992. PubMed ID: 26046799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual flight control in naturalistic and artificial environments.
    Baird E; Dacke M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Dec; 198(12):869-76. PubMed ID: 22983439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fruit flies increase attention to their frontal visual field during fast forward optic flow.
    Palermo N; Theobald J
    Biol Lett; 2019 Jan; 15(1):20180767. PubMed ID: 30958206
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optic flow-based course control in insects.
    Mauss AS; Borst A
    Curr Opin Neurobiol; 2020 Feb; 60():21-27. PubMed ID: 31810007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of optic flow pooling in insect flight control in cluttered environments.
    Lecoeur J; Dacke M; Floreano D; Baird E
    Sci Rep; 2019 May; 9(1):7707. PubMed ID: 31118454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.