BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34894269)

  • 41. Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis.
    Flütsch S; Wang Y; Takemiya A; Vialet-Chabrand SRM; Klejchová M; Nigro A; Hills A; Lawson T; Blatt MR; Santelia D
    Plant Cell; 2020 Jul; 32(7):2325-2344. PubMed ID: 32354788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SCaBP3/CBL7 negatively regulates the plasma membrane H
    Liu X; Wu Y; Fu H; Song S; He Q; Yang Y
    Plant Signal Behav; 2022 Dec; 17(1):2092699. PubMed ID: 35762301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FLOWERING LOCUS T regulates stomatal opening.
    Kinoshita T; Ono N; Hayashi Y; Morimoto S; Nakamura S; Soda M; Kato Y; Ohnishi M; Nakano T; Inoue S; Shimazaki K
    Curr Biol; 2011 Jul; 21(14):1232-8. PubMed ID: 21737277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Ca
    Yang Y; Wu Y; Ma L; Yang Z; Dong Q; Li Q; Ni X; Kudla J; Song C; Guo Y
    Plant Cell; 2019 Jun; 31(6):1367-1384. PubMed ID: 30962395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis.
    Negi J; Obata T; Nishimura S; Song B; Yamagaki S; Ono Y; Okabe M; Hoshino N; Fukatsu K; Tabata R; Yamaguchi K; Shigenobu S; Yamada M; Hasebe M; Sawa S; Kinoshita T; Nishida I; Iba K
    Plant J; 2023 Jul; 115(2):563-576. PubMed ID: 37058128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture.
    Kostaki KI; Coupel-Ledru A; Bonnell VC; Gustavsson M; Sun P; McLaughlin FJ; Fraser DP; McLachlan DH; Hetherington AM; Dodd AN; Franklin KA
    Plant Physiol; 2020 Mar; 182(3):1404-1419. PubMed ID: 31949030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells.
    Kinoshita T; Shimazaki Ki
    EMBO J; 1999 Oct; 18(20):5548-58. PubMed ID: 10523299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crosstalk between blue-light- and ABA-signaling pathways in stomatal guard cells.
    Hayashi M; Kinoshita T
    Plant Signal Behav; 2011 Nov; 6(11):1662-4. PubMed ID: 22067996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack.
    Liu J; Elmore JM; Fuglsang AT; Palmgren MG; Staskawicz BJ; Coaker G
    PLoS Biol; 2009 Jun; 7(6):e1000139. PubMed ID: 19564897
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase.
    Yang Y; Qin Y; Xie C; Zhao F; Zhao J; Liu D; Chen S; Fuglsang AT; Palmgren MG; Schumaker KS; Deng XW; Guo Y
    Plant Cell; 2010 Apr; 22(4):1313-32. PubMed ID: 20418496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of plasma membrane H
    Xue Y; Zhao S; Yang Z; Guo Y; Yang Y
    Plant Signal Behav; 2019; 14(3):e1573097. PubMed ID: 30720384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical evidence for the requirement of 14-3-3 protein binding in activation of the guard-cell plasma membrane H+-ATPase by blue light.
    Kinoshita T; Shimazaki K
    Plant Cell Physiol; 2002 Nov; 43(11):1359-65. PubMed ID: 12461136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TMK-based cell-surface auxin signalling activates cell-wall acidification.
    Lin W; Zhou X; Tang W; Takahashi K; Pan X; Dai J; Ren H; Zhu X; Pan S; Zheng H; Gray WM; Xu T; Kinoshita T; Yang Z
    Nature; 2021 Nov; 599(7884):278-282. PubMed ID: 34707287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses.
    Hashimoto-Sugimoto M; Higaki T; Yaeno T; Nagami A; Irie M; Fujimi M; Miyamoto M; Akita K; Negi J; Shirasu K; Hasezawa S; Iba K
    Nat Commun; 2013; 4():2215. PubMed ID: 23896897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. VAMP711 Is Required for Abscisic Acid-Mediated Inhibition of Plasma Membrane H
    Xue Y; Yang Y; Yang Z; Wang X; Guo Y
    Plant Physiol; 2018 Nov; 178(3):1332-1343. PubMed ID: 30217827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14lambda and the PP2C phosphatase KAPP.
    Rienties IM; Vink J; Borst JW; Russinova E; de Vries SC
    Planta; 2005 Jun; 221(3):394-405. PubMed ID: 15592873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phosphatase activities analyzed by in vivo expressions.
    Schweighofer A; Ayatollahi Z; Meskiene I
    Methods Mol Biol; 2009; 479():247-60. PubMed ID: 19083183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress.
    Nguyen NH; Jung C; Cheong JJ
    Plant Physiol Biochem; 2019 Aug; 141():325-331. PubMed ID: 31207493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Overexpression of Plasma Membrane H
    Toh S; Takata N; Ando E; Toda Y; Wang Y; Hayashi Y; Mitsuda N; Nagano S; Taniguchi T; Kinoshita T
    Front Plant Sci; 2021; 12():766037. PubMed ID: 34899787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants.
    Sheen J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):975-80. PubMed ID: 9448270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.