BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34894352)

  • 1. The effect of pH adjusted electrolytes on capillary isoelectric focusing assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2022 Mar; 43(5-6):669-678. PubMed ID: 34894352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution dynamic computer simulation analysis of the behavior of sample components with pI values outside the pH gradient established by carrier ampholyte CIEF.
    Thormann W; Kilár F
    Electrophoresis; 2013 Mar; 34(5):716-24. PubMed ID: 23229109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electrolyte pH on CIEF with narrow pH range ampholytes.
    Páger C; Vargová A; Takácsi-Nagy A; Dörnyei Á; Kilár F
    Electrophoresis; 2012 Nov; 33(22):3269-75. PubMed ID: 23086725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment.
    Vigh G; Gaš B
    Electrophoresis; 2023 Apr; 44(7-8):675-688. PubMed ID: 36641504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: Elucidation of the contributing electrokinetic processes by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2021 Apr; 42(7-8):814-833. PubMed ID: 33184847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the theoretical description of the isoelectric focusing experiment: III. Carrier ampholyte behavior in transient, bidirectional isotachophoresis.
    Vigh G; Gaš B
    Electrophoresis; 2023 Apr; 44(7-8):689-700. PubMed ID: 36593722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process.
    Thormann W; Mosher RA
    Electrophoresis; 2006 Mar; 27(5-6):968-83. PubMed ID: 16523465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of quasi-isoelectric buffers as anolyte and catholyte to improve capillary isoelectric focusing performances.
    Poitevin M; Peltre G; Descroix S
    Electrophoresis; 2008 Apr; 29(8):1687-93. PubMed ID: 18383017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.
    Thormann W
    Electrophoresis; 2023 Apr; 44(7-8):656-666. PubMed ID: 36448503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: the post-separation stabilizing phase revisited.
    Mosher RA; Thormann W
    Electrophoresis; 2002 Jun; 23(12):1803-14. PubMed ID: 12116123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the theoretical description of the isoelectric focusing experiment: I. The path from Svensson's steady-state model to the current two-stage model of isoelectric focusing.
    Vigh G; Gas B
    Electrophoresis; 2023 Apr; 44(7-8):667-674. PubMed ID: 36640145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoretic separations of proteins using carrier ampholytes.
    Chartogne A; Reeuwijk B; Hofte B; van der Heijden R; Tjaden UR; van der Greef J
    J Chromatogr A; 2002 Jun; 959(1-2):289-98. PubMed ID: 12141555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically controlled focusing of proteins and ampholytes between two modified electrolytes. Computer simulation.
    Deml M; Pospíchal J
    Appl Theor Electrophor; 1994; 4(3):107-15. PubMed ID: 7612692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving reaction boundary and isoelectric focusing: IV. Systemic study on Hjertén's pH gradient mobilization.
    Xu YJ; Li S; Zhang W; Fan LY; Shao J; Cao CX
    J Sep Sci; 2009 Feb; 32(4):585-96. PubMed ID: 19212973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical aspects of carrier ampholyte-free isoelectric focusing.
    Pospíchal J; Glovinová E
    J Chromatogr A; 2001 May; 918(1):195-203. PubMed ID: 11403448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes.
    Mosher RA; Thormann W
    Electrophoresis; 2008 Mar; 29(5):1036-47. PubMed ID: 18219653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection.
    Xu Z; Okabe N; Arai A; Hirokawa T
    Electrophoresis; 2010 Oct; 31(21):3558-65. PubMed ID: 20925054
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.