These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 34894367)

  • 1. Tailoring Hyperbranched Poly(β-amino ester) as a Robust and Universal Platform for Cytosolic Protein Delivery.
    Liu X; Zhao Z; Wu F; Chen Y; Yin L
    Adv Mater; 2022 Feb; 34(8):e2108116. PubMed ID: 34894367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of diblock copolymer enables efficient cytosolic protein delivery.
    Zhao H; Zhang C; Tian C; Li L; Wu B; Stuart MAC; Wang M; Zhou X; Wang J
    J Colloid Interface Sci; 2024 Nov; 673():722-734. PubMed ID: 38901362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing.
    Rui Y; Wilson DR; Choi J; Varanasi M; Sanders K; Karlsson J; Lim M; Green JJ
    Sci Adv; 2019 Dec; 5(12):eaay3255. PubMed ID: 31840076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing.
    Liu X; Zhao Z; Li W; Li Y; Yang Q; Liu N; Chen Y; Yin L
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202307664. PubMed ID: 37718311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Highly Branched Poly(β-amino ester)s for Efficient and Organ-Selective mRNA Delivery.
    Yong H; Lin L; Li Z; Guo R; Wang C; Liu S; Zhou D
    Nano Lett; 2024 Jul; ():. PubMed ID: 39013032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Cytosolic Delivery of Proteins Using Lyophilized and Reconstituted Polymer-Protein Assemblies.
    Luther DC; Nagaraj H; Goswami R; Çiçek YA; Jeon T; Gopalakrishnan S; Rotello VM
    Pharm Res; 2022 Jun; 39(6):1197-1204. PubMed ID: 35297498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Proteins to the Cytosol Using Delivery Systems with Engineered Polymer Architecture.
    Kretzmann JA; Luther DC; Evans CW; Jeon T; Jerome W; Gopalakrishnan S; Lee YW; Norret M; Iyer KS; Rotello VM
    J Am Chem Soc; 2021 Mar; 143(12):4758-4765. PubMed ID: 33705125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies.
    Dutta K; Kanjilal P; Das R; Thayumanavan S
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1821-1830. PubMed ID: 33034131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics against myocardial ischemia reperfusion (IR) injury.
    Lan M; Hou M; Yan J; Deng Q; Zhao Z; Lv S; Dang J; Yin M; Ji Y; Yin L
    Nano Res; 2022; 15(10):9125-9134. PubMed ID: 35915748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury.
    Wang Y; Hou M; Duan S; Zhao Z; Wu X; Chen Y; Yin L
    Bioact Mater; 2022 Nov; 17():320-333. PubMed ID: 35386446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immuno-Engineered Nanodecoys for the Multi-Target Anti-Inflammatory Treatment of Autoimmune Diseases.
    Hou M; Wei Y; Zhao Z; Han W; Zhou R; Zhou Y; Zheng Y; Yin L
    Adv Mater; 2022 Mar; 34(12):e2108817. PubMed ID: 35044010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Determinants of Stimuli-Responsiveness in Amphiphilic Macromolecular Nano-assemblies.
    Liu H; Lu HH; Alp Y; Wu R; Thayumanavan S
    Prog Polym Sci; 2024 Jan; 148():. PubMed ID: 38476148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and application of spermine-based amphiphilic poly(β-amino ester)s for siRNA delivery.
    Jin Y; Adams F; Nguyen A; Sturm S; Carnerio S; Müller-Caspary K; Merkel OM
    Nanoscale Adv; 2023 Sep; 5(19):5256-5262. PubMed ID: 37767040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Cytosolic Delivery of Proteins and CRISPR-Cas9 Genome Editing by Gemini Amphiphiles via Non-Endocytic Translocation Pathways.
    Le Z; Pan Q; He Z; Liu H; Shi Y; Liu L; Liu Z; Ping Y; Chen Y
    ACS Cent Sci; 2023 Jul; 9(7):1313-1326. PubMed ID: 37521791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of RNA-based treatments in the field of cancer immunotherapy.
    Chehelgerdi M; Chehelgerdi M
    Mol Cancer; 2023 Jul; 22(1):106. PubMed ID: 37420174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing in Ferret Airway Epithelia Mediated by CRISPR/Nucleases Delivered with Amphiphilic Shuttle Peptides.
    Luo M; Ma J; Cheng X; Wu S; Bartels DJ; Guay D; Engelhardt JF; Liu X
    Hum Gene Ther; 2023 Aug; 34(15-16):705-718. PubMed ID: 37335046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular delivery of therapeutic proteins. New advancements and future directions.
    Porello I; Cellesi F
    Front Bioeng Biotechnol; 2023; 11():1211798. PubMed ID: 37304137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases.
    Carneiro SP; Greco A; Chiesa E; Genta I; Merkel OM
    Expert Opin Drug Deliv; 2023 Apr; 20(4):471-487. PubMed ID: 36896650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A light-activated polymer with excellent serum tolerance for intracellular protein delivery.
    Ren L; Jiang L; Ren Q; Lv J; Zhu L; Cheng Y
    Chem Sci; 2023 Feb; 14(8):2046-2053. PubMed ID: 36845943
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.