These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34894726)

  • 1. Adaptive changes in single-nephron GFR, tubular morphology, and transport in a pregnant rat nephron: modeling and analysis.
    Stadt MM; Layton AT
    Am J Physiol Renal Physiol; 2022 Feb; 322(2):F121-F137. PubMed ID: 34894726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive changes in GFR, tubular morphology, and transport in subtotal nephrectomized kidneys: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F199-F209. PubMed ID: 28331059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pregnancy and hypertension on kidney function in female rats: Modeling and functional implications.
    Stadt MM; West CA; Layton AT
    PLoS One; 2023; 18(5):e0279785. PubMed ID: 37253048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles.
    Torres-Pinzon DL; Ralph DL; Veiras LC; McDonough AA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C897-C909. PubMed ID: 34613843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
    Edwards A; McDonough AA
    Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1656-F1668. PubMed ID: 31657247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional implications of the sex differences in transporter abundance along the rat nephron: modeling and analysis.
    Hu R; McDonough AA; Layton AT
    Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1462-F1474. PubMed ID: 31566436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2018 Apr; 314(4):F643-F657. PubMed ID: 29357444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive remodeling of renal Na+ and K+ transport during pregnancy.
    de Souza AMA; West CA
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):379-383. PubMed ID: 29957655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal calcium and magnesium handling during pregnancy: modeling and analysis.
    Hakimi S; Dutta P; Layton AT
    Am J Physiol Renal Physiol; 2024 Jul; 327(1):F77-F90. PubMed ID: 38721663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional implications of sexual dimorphism of transporter patterns along the rat proximal tubule: modeling and analysis.
    Li Q; McDonough AA; Layton HE; Layton AT
    Am J Physiol Renal Physiol; 2018 Sep; 315(3):F692-F700. PubMed ID: 29846110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional adaptation to reduction in renal mass.
    Hayslett JP
    Physiol Rev; 1979 Jan; 59(1):137-64. PubMed ID: 220646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting sex differences in the effects of diuretics in renal epithelial transport during angiotensin II-induced hypertension.
    Zheng K; Layton AT
    Am J Physiol Renal Physiol; 2024 May; 326(5):F737-F750. PubMed ID: 38482554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F389-96. PubMed ID: 19474187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High dietary K
    Wang T; Liu T; Xu S; Frindt G; Weinstein AM; Palmer LG
    Am J Physiol Renal Physiol; 2023 Aug; 325(2):F224-F234. PubMed ID: 37318989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis.
    Veiras LC; Girardi ACC; Curry J; Pei L; Ralph DL; Tran A; Castelo-Branco RC; Pastor-Soler N; Arranz CT; Yu ASL; McDonough AA
    J Am Soc Nephrol; 2017 Dec; 28(12):3504-3517. PubMed ID: 28774999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis.
    Stadt MM; Layton AT
    Front Physiol; 2022; 13():991705. PubMed ID: 36246142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
    Layton AT; Laghmani K; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1217-F1229. PubMed ID: 27707706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated control of Na transport along the nephron.
    Palmer LG; Schnermann J
    Clin J Am Soc Nephrol; 2015 Apr; 10(4):676-87. PubMed ID: 25098598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in solute transport along the nephrons: effects of Na
    Hu R; McDonough AA; Layton AT
    Am J Physiol Renal Physiol; 2020 Sep; 319(3):F487-F505. PubMed ID: 32744084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of renal sodium and calcium transport: a modeling analysis of transporter inhibition and sex differences.
    Hakimi S; Dutta P; Layton AT
    Am J Physiol Renal Physiol; 2023 Nov; 325(5):F536-F551. PubMed ID: 37615047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.