These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34894912)

  • 1. Differential anti-inflammatory properties of chitosan-based cryogel scaffolds depending on chitosan/gelatin ratio.
    Ayaz F; Demir D; Bölgen N
    Artif Cells Nanomed Biotechnol; 2021 Dec; 49(1):682-690. PubMed ID: 34894912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D; Elowsson L; Kirsebom H
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering.
    Kuo CY; Chen CH; Hsiao CY; Chen JP
    Carbohydr Polym; 2015 Mar; 117():722-730. PubMed ID: 25498693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering.
    Bhat S; Tripathi A; Kumar A
    J R Soc Interface; 2011 Apr; 8(57):540-54. PubMed ID: 20943683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering.
    Chen CH; Kuo CY; Wang YJ; Chen JP
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays.
    Olov N; Mirzadeh H; Moradi R; Rajabi S; Bagheri-Khoulenjani S
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2438-2451. PubMed ID: 35661396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration.
    Kao HH; Kuo CY; Chen KS; Chen JP
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration.
    Hixon KR; Eberlin CT; Lu T; Neal SM; Case ND; McBride-Gagyi SH; Sell SA
    Biomed Mater; 2017 Mar; 12(2):025005. PubMed ID: 28145891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering.
    Carvalho DN; López-Cebral R; Sousa RO; Alves AL; Reys LL; Silva SS; Oliveira JM; Reis RL; Silva TH
    Biomed Mater; 2020 Sep; 15(5):055030. PubMed ID: 32570224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J
    Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals.
    Shakya AK; Holmdahl R; Nandakumar KS; Kumar A
    J Biomed Mater Res A; 2014 Oct; 102(10):3409-18. PubMed ID: 24142798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible scaffolds based on natural polymers for regenerative medicine.
    Akilbekova D; Shaimerdenova M; Adilov S; Berillo D
    Int J Biol Macromol; 2018 Jul; 114():324-333. PubMed ID: 29578021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering.
    EzEldeen M; Loos J; Mousavi Nejad Z; Cristaldi M; Murgia D; Braem A; Jacobs R
    Eur Cell Mater; 2021 May; 41():485-501. PubMed ID: 33948929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liver tissue responses to gelatin and gelatin/chitosan gels.
    Wang X; Yu X; Yan Y; Zhang R
    J Biomed Mater Res A; 2008 Oct; 87(1):62-8. PubMed ID: 18080311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
    Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH
    Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application.
    Maji K; Dasgupta S; Pramanik K; Bissoyi A
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():83-94. PubMed ID: 29525100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.