These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34895293)

  • 1. One-pot universal NicE-seq: all enzymatic downstream processing of 4% formaldehyde crosslinked cells for chromatin accessibility genomics.
    Vishnu US; Estève PO; Chin HG; Pradhan S
    Epigenetics Chromatin; 2021 Dec; 14(1):53. PubMed ID: 34895293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal NicE-seq for high-resolution accessible chromatin profiling for formaldehyde-fixed and FFPE tissues.
    Chin HG; Sun Z; Vishnu US; Hao P; Cejas P; Spracklin G; Estève PO; Xu SY; Long HW; Pradhan S
    Clin Epigenetics; 2020 Sep; 12(1):143. PubMed ID: 32962734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal NicE-Seq: A Simple and Quick Method for Accessible Chromatin Detection in Fixed Cells.
    Chin HG; Vishnu US; Sun Z; Ponnaluri VKC; Zhang G; Xu SY; Benoukraf T; Cejas P; Spracklin G; Estève PO; Long HW; Pradhan S
    Methods Mol Biol; 2023; 2611():39-52. PubMed ID: 36807062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NicE-viewSeq: An Integrative Visualization and Genomics Method to Detect Accessible Chromatin in Fixed Cells.
    Estève PO; Vishnu US; Chin HG; Pradhan S
    Methods Mol Biol; 2023; 2611():293-302. PubMed ID: 36807075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive evaluation of ATAC-seq protocols for native or formaldehyde-fixed nuclei.
    Zhang H; Rice ME; Alvin JW; Farrera-Gaffney D; Galligan JJ; Johnson MDL; Cusanovich DA
    BMC Genomics; 2022 Mar; 23(1):214. PubMed ID: 35296236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NicE-seq: high resolution open chromatin profiling.
    Ponnaluri VKC; Zhang G; Estève PO; Spracklin G; Sian S; Xu SY; Benoukraf T; Pradhan S
    Genome Biol; 2017 Jun; 18(1):122. PubMed ID: 28655330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker histone epitopes are hidden by in situ higher-order chromatin structure.
    Teif VB; Gould TJ; Clarkson CT; Boyd L; Antwi EB; Ishaque N; Olins AL; Olins DE
    Epigenetics Chromatin; 2020 Jun; 13(1):26. PubMed ID: 32505195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide analysis of chromatin accessibility using ATAC-seq.
    Shashikant T; Ettensohn CA
    Methods Cell Biol; 2019; 151():219-235. PubMed ID: 30948010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization and Sequencing of Accessible Chromatin Reveals Cell Cycle and Post-HDAC inhibitor Treatment Dynamics.
    Estève PO; Vishnu US; Chin HG; Pradhan S
    J Mol Biol; 2020 Sep; 432(19):5304-5321. PubMed ID: 32763232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde-assisted Isolation of Regulatory Elements to Measure Chromatin Accessibility in Mammalian Cells.
    Rodríguez-Gil A; Riedlinger T; Ritter O; Saul VV; Schmitz ML
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29658938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq).
    Bianco S; Rodrigue S; Murphy BD; Gévry N
    Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HiCoP, a simple and robust method for detecting interactions of regulatory regions.
    Zhang Y; Li Z; Bian S; Zhao H; Feng D; Chen Y; Hou Y; Liu Q; Hao B
    Epigenetics Chromatin; 2020 Jul; 13(1):27. PubMed ID: 32611439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XL-DNase-seq: improved footprinting of dynamic transcription factors.
    Oh KS; Ha J; Baek S; Sung MH
    Epigenetics Chromatin; 2019 Jun; 12(1):30. PubMed ID: 31164146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq.
    Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic methods in profiling DNA accessibility and factor localization.
    Klein DC; Hainer SJ
    Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new fractionation assay, based on the size of formaldehyde-crosslinked, mildly sheared chromatin, delineates the chromatin structure at promoter regions.
    Ishihara S; Varma R; Schwartz RH
    Nucleic Acids Res; 2010 Jun; 38(11):e124. PubMed ID: 20371521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
    Li S; Wu B; Ling Y; Guo M; Qin B; Ren X; Wang C; Yang H; Chen L; Liao Y; Liu Y; Peng X; Xu C; Wang Z; Shen Y; Chen J; Liu L; Niu B; Zhu M; Liu L; Li F; Zhu T; Zhu Z; Zhou X; Lu H
    Front Immunol; 2021; 12():625881. PubMed ID: 33717140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq.
    Lu RJ; Liu YT; Huang CW; Yen MR; Lin CY; Chen PY
    Front Genet; 2020; 11():618478. PubMed ID: 33584814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrogating the Accessible Chromatin Landscape of Eukaryote Genomes Using ATAC-seq.
    Marinov GK; Shipony Z
    Methods Mol Biol; 2021; 2243():183-226. PubMed ID: 33606259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.