These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34895302)

  • 41. Solving Coupled Cluster Equations by the Newton Krylov Method.
    Yang C; Brabec J; Veis L; Williams-Young DB; Kowalski K
    Front Chem; 2020; 8():590184. PubMed ID: 33363108
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative.
    Arshad S; Baleanu D; Huang J; Al Qurashi MM; Tang Y; Zhao Y
    Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265411
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the convergence of a high-accuracy compact conservative scheme for the modified regularized long-wave equation.
    Pan X; Zhang L
    Springerplus; 2016; 5():474. PubMed ID: 27217989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of nonstandard computational method for stochastic susceptible-infected-treated-recovered dynamics of coronavirus model.
    Shatanawi W; Raza A; Arif MS; Abodayeh K; Rafiq M; Bibi M
    Adv Differ Equ; 2020; 2020(1):505. PubMed ID: 32983237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Applying Laplace Adomian decomposition method (LADM) for solving a model of Covid-19.
    Nave O; Shemesh U; HarTuv I
    Comput Methods Biomech Biomed Engin; 2021 Nov; 24(14):1618-1628. PubMed ID: 33787397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A multiconsistent computational methodology to resolve a diffusive epidemiological system with effects of migration, vaccination and quarantine.
    Herrera-Serrano JE; Guerrero-Díaz-de-León JA; Medina-Ramírez IE; Macías-Díaz JE
    Comput Methods Programs Biomed; 2023 Jun; 236():107526. PubMed ID: 37098304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A numerical solution of a singular boundary value problem arising in boundary layer theory.
    Hu J
    Springerplus; 2016; 5():198. PubMed ID: 27026894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
    Wan X; Li Z
    Discrete Continuous Dyn Syst Ser B; 2012 Jun; 17(4):1155-1174. PubMed ID: 22701346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects.
    Uzunov IM; Georgiev ZD; Arabadzhiev TN
    Phys Rev E; 2018 May; 97(5-1):052215. PubMed ID: 29906910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Numerical Convergence Analysis of the Frank-Kamenetskii Equation.
    Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.
    Cengizci S; Atay MT; Eryılmaz A
    Springerplus; 2016; 5():280. PubMed ID: 27006888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the optimal control of coronavirus (2019-nCov) mathematical model; a numerical approach.
    Sweilam NH; Al-Mekhlafi SM; Albalawi AO; Baleanu D
    Adv Differ Equ; 2020; 2020(1):528. PubMed ID: 32994791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.
    Macías-Díaz JE; Macías S; Medina-Ramírez IE
    Comput Biol Chem; 2013 Dec; 47():24-30. PubMed ID: 23850847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A numerical efficient splitting method for the solution of two dimensional susceptible infected recovered epidemic model of whooping cough dynamics: Applications in bio-medical engineering.
    Ahmed N; Ali M; Rafiq M; Khan I; Nisar KS; Rehman MA; Ahmad MO
    Comput Methods Programs Biomed; 2020 Jul; 190():105350. PubMed ID: 32078958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computation of dynamic adsorption with adaptive integral, finite difference, and finite element methods.
    Liao YC; Franses EI; Basaran OA
    J Colloid Interface Sci; 2003 Feb; 258(2):310-21. PubMed ID: 12618101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimal bang-bang control for variable-order dengue virus; numerical studies.
    Sweilam NH; Al-Mekhlafi SM; Shatta SA
    J Adv Res; 2021 Sep; 32():37-44. PubMed ID: 34484824
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical simulations of phase separation dynamics in a water-oil-surfactant system.
    Kim J
    J Colloid Interface Sci; 2006 Nov; 303(1):272-9. PubMed ID: 16890235
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Compact fourth-order finite difference method for solving differential equations.
    Wilkinson PB; Fromhold TM; Tench CR; Taylor RP; Micolich AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):047701. PubMed ID: 11690185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.