These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34895468)

  • 1. Nonlinear transient amplification in recurrent neural networks with short-term plasticity.
    Wu YK; Zenke F
    Elife; 2021 Dec; 10():. PubMed ID: 34895468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-normal amplification in random balanced neuronal networks.
    Hennequin G; Vogels TP; Gerstner W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011909. PubMed ID: 23005454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-tuning of neural circuits through short-term synaptic plasticity.
    Sussillo D; Toyoizumi T; Maass W
    J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits.
    Yang X; La Camera G
    PLoS Comput Biol; 2024 Jul; 20(7):e1012220. PubMed ID: 38950068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic Activity-Dependent Tuning of Recurrent Networks for Robust Propagation of Activity.
    Gjorgjieva J; Evers JF; Eglen SJ
    J Neurosci; 2016 Mar; 36(13):3722-34. PubMed ID: 27030758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the dynamics of cerebellar Purkinje cells through the interaction of excitatory and inhibitory feedforward pathways.
    Tang Y; An L; Yuan Y; Pei Q; Wang Q; Liu JK
    PLoS Comput Biol; 2021 Feb; 17(2):e1008670. PubMed ID: 33566820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attractor dynamics in local neuronal networks.
    Thivierge JP; Comas R; Longtin A
    Front Neural Circuits; 2014; 8():22. PubMed ID: 24688457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent networks with short term synaptic depression.
    York LC; van Rossum MC
    J Comput Neurosci; 2009 Dec; 27(3):607-20. PubMed ID: 19578989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.
    Ocker GK; Litwin-Kumar A; Doiron B
    PLoS Comput Biol; 2015 Aug; 11(8):e1004458. PubMed ID: 26291697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asynchronous Rate Chaos in Spiking Neuronal Circuits.
    Harish O; Hansel D
    PLoS Comput Biol; 2015 Jul; 11(7):e1004266. PubMed ID: 26230679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust balancing mechanism for spiking neural networks.
    Politi A; Torcini A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38639569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks.
    Podlaski WF; Machens CK
    Neural Comput; 2024 Apr; 36(5):803-857. PubMed ID: 38658028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
    Rubin R; Abbott LF; Sompolinsky H
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):E9366-E9375. PubMed ID: 29042519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent activity in neural networks with dynamic synapses.
    Barak O; Tsodyks M
    PLoS Comput Biol; 2007 Feb; 3(2):e35. PubMed ID: 17319739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike propagation in driven chain networks with dominant global inhibition.
    Chang W; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051917. PubMed ID: 19518490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.