These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34895468)

  • 21. Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity.
    Naumann LB; Sprekeler H
    PLoS Comput Biol; 2020 Aug; 16(8):e1008118. PubMed ID: 32764742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity.
    Goudar V; Buonomano DV
    J Neurophysiol; 2015 Jan; 113(2):509-23. PubMed ID: 25339707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.
    Sadeh S; Clopath C; Rotter S
    PLoS Comput Biol; 2015 Jun; 11(6):e1004307. PubMed ID: 26090844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spike-Timing-dependent plasticity and short-term plasticity jointly control the excitation of Hebbian plasticity without weight constraints in neural networks.
    Fernando S; Yamada K
    Comput Intell Neurosci; 2012; 2012():968272. PubMed ID: 23365563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.
    Fung CC; Wong KY; Wang H; Wu S
    Neural Comput; 2012 May; 24(5):1147-85. PubMed ID: 22295986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-term depression and transient memory in sensory cortex.
    Gillary G; Heydt RV; Niebur E
    J Comput Neurosci; 2017 Dec; 43(3):273-294. PubMed ID: 29027605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional mechanisms underlie the emergence of a diverse range of plasticity phenomena.
    Henderson JA; Gong P
    PLoS Comput Biol; 2018 Nov; 14(11):e1006590. PubMed ID: 30419014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Memory replay in balanced recurrent networks.
    Chenkov N; Sprekeler H; Kempter R
    PLoS Comput Biol; 2017 Jan; 13(1):e1005359. PubMed ID: 28135266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synapse-type-specific competitive Hebbian learning forms functional recurrent networks.
    Eckmann S; Young EJ; Gjorgjieva J
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2305326121. PubMed ID: 38870059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.
    Gillett M; Pereira U; Brunel N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29948-29958. PubMed ID: 33177232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity.
    Luz Y; Shamir M
    PLoS Comput Biol; 2012 Jan; 8(1):e1002334. PubMed ID: 22291583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical amplification models of experience-dependent development of selective columns and response sparsification.
    Christie IK; Miller P; Van Hooser SD
    J Neurophysiol; 2017 Aug; 118(2):874-893. PubMed ID: 28515285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A network of spiking neurons that can represent interval timing: mean field analysis.
    Gavornik JP; Shouval HZ
    J Comput Neurosci; 2011 Apr; 30(2):501-13. PubMed ID: 20830512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short-term plasticity explains irregular persistent activity in working memory tasks.
    Hansel D; Mato G
    J Neurosci; 2013 Jan; 33(1):133-49. PubMed ID: 23283328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear stimulus representations in neural circuits with approximate excitatory-inhibitory balance.
    Baker C; Zhu V; Rosenbaum R
    PLoS Comput Biol; 2020 Sep; 16(9):e1008192. PubMed ID: 32946433
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mean-driven and fluctuation-driven persistent activity in recurrent networks.
    Renart A; Moreno-Bote R; Wang XJ; Parga N
    Neural Comput; 2007 Jan; 19(1):1-46. PubMed ID: 17134316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission.
    Mongillo G; Hansel D; van Vreeswijk C
    Phys Rev Lett; 2012 Apr; 108(15):158101. PubMed ID: 22587287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.