These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 34895752)
1. Water sorption characteristics of freeze-dried bacteria in low-moisture foods. Xu J; Xie Y; Paul NC; Roopesh MS; Shah DH; Tang J Int J Food Microbiol; 2022 Feb; 362():109494. PubMed ID: 34895752 [TBL] [Abstract][Full Text] [Related]
2. Exponentially Increased Thermal Resistance of Salmonella spp. and Enterococcus faecium at Reduced Water Activity. Liu S; Tang J; Tadapaneni RK; Yang R; Zhu MJ Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439987 [No Abstract] [Full Text] [Related]
3. Influence of low water activity on the thermal resistance of Pérez-Reyes ME; Jie X; Zhu MJ; Tang J; Barbosa-Cánovas GV Food Sci Technol Int; 2021 Mar; 27(2):184-193. PubMed ID: 32703024 [TBL] [Abstract][Full Text] [Related]
4. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Liu S; Rojas RV; Gray P; Zhu MJ; Tang J Food Microbiol; 2018 Sep; 74():92-99. PubMed ID: 29706342 [TBL] [Abstract][Full Text] [Related]
6. Enhanced heat tolerance of freeze-dried Enterococcus faecium NRRL B-2354 as valid Salmonella surrogate in low-moisture foods. Liu S; Qiu Y; Su G; Sheng L; Qin W; Ye Q; Wu Q Food Res Int; 2023 Nov; 173(Pt 1):113232. PubMed ID: 37803547 [TBL] [Abstract][Full Text] [Related]
7. Water Diffusion from a Bacterial Cell in Low-Moisture Foods. Syamaladevi RM; Tang J; Zhong Q J Food Sci; 2016 Sep; 81(9):R2129-34. PubMed ID: 27505687 [TBL] [Abstract][Full Text] [Related]
8. Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar enteritidis PT 30 in wheat flour. Smith DF; Marks BP J Food Prot; 2015 Feb; 78(2):281-6. PubMed ID: 25710142 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Tsai HC; Ballom KF; Xia S; Tang J; Marks BP; Zhu MJ Food Microbiol; 2019 Sep; 82():135-141. PubMed ID: 31027767 [TBL] [Abstract][Full Text] [Related]
10. Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity. Yang R; Wei L; Dai J; Tang J Food Res Int; 2022 Jul; 157():111288. PubMed ID: 35761596 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods. Rachon G; Peñaloza W; Gibbs PA Int J Food Microbiol; 2016 Aug; 231():16-25. PubMed ID: 27174678 [TBL] [Abstract][Full Text] [Related]
12. Heat resistance comparison of Salmonella and Enterococcus faecium in cornmeal at different moisture levels. Gu K; Sekhon AS; Richter JK; Yang Y; Pietrysiak E; Michael M; Ganjyal GM Int J Food Microbiol; 2022 May; 368():109608. PubMed ID: 35278796 [TBL] [Abstract][Full Text] [Related]
13. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. Gautam B; Govindan BN; Gӓnzle M; Roopesh MS Int J Food Microbiol; 2020 Dec; 334():108813. PubMed ID: 32841809 [TBL] [Abstract][Full Text] [Related]
14. Development of a Dry Inoculation Method for Thermal Challenge Studies in Low-Moisture Foods by Using Talc as a Carrier for Salmonella and a Surrogate (Enterococcus faecium). Enache E; Kataoka A; Black DG; Napier CD; Podolak R; Hayman MM J Food Prot; 2015 Jun; 78(6):1106-12. PubMed ID: 26038899 [TBL] [Abstract][Full Text] [Related]
15. Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Dhaliwal HK; Gänzle M; Roopesh MS Food Res Int; 2021 Sep; 147():110548. PubMed ID: 34399525 [TBL] [Abstract][Full Text] [Related]
16. Interlaboratory Evaluation of Enterococcus faecium NRRL B-2354 as a Salmonella Surrogate for Validating Thermal Treatment of Multiple Low-Moisture Foods. Ahmad NH; Hildebrandt IM; Pickens SR; Vasquez S; Jin Y; Liu S; Halik LA; Tsai HC; Lau SK; D'Souza RC; Kumar S; Subbiah J; Thippareddi H; Zhu MJ; Tang J; Anderson NM; Grasso-Kelley EM; Ryser ET; Marks BP J Food Prot; 2022 Nov; 85(11):1538-1552. PubMed ID: 35723555 [TBL] [Abstract][Full Text] [Related]
17. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Tadapaneni RK; Yang R; Carter B; Tang J Food Res Int; 2017 Dec; 102():203-212. PubMed ID: 29195941 [TBL] [Abstract][Full Text] [Related]
18. Modeling the effect of protein and fat on the thermal resistance of Salmonella enterica Enteritidis PT 30 in egg powders. Zhang Y; Pérez-Reyes ME; Qin W; Hu B; Wu Q; Liu S Food Res Int; 2022 May; 155():111098. PubMed ID: 35400471 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella During Extrusion of Low-Moisture Food. Verma T; Wei X; Lau SK; Bianchini A; Eskridge KM; Subbiah J J Food Sci; 2018 Apr; 83(4):1063-1072. PubMed ID: 29577278 [TBL] [Abstract][Full Text] [Related]
20. Modeling the Effects of Product Temperature, Product Moisture, and Process Humidity on Thermal Inactivation of Salmonella in Pistachios during Hot-Air Heating. Casulli KE; Dolan KD; Marks BP J Food Prot; 2021 Jan; 84(1):47-57. PubMed ID: 32818239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]