These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34895807)

  • 1. Mechanisms and application of the IAST-EBC model for predicting 2-MIB adsorption by PAC in authentic raw waters: Correlation between NOM competitiveness and water quality parameters.
    Ren J; Yang S; Li L; Yu S; Gao N
    J Hazard Mater; 2022 Apr; 427():127904. PubMed ID: 34895807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projecting competition between 2-methylisoborneol and natural organic matter in adsorption onto activated carbon from ozonated source waters.
    Wang Q; Zietzschmann F; Yu J; Hofman R; An W; Yang M; Rietveld LC
    Water Res; 2020 Apr; 173():115574. PubMed ID: 32062223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling nonequilibrium adsorption of MIB and sulfamethoxazole by powdered activated carbon and the role of dissolved organic matter competition.
    Shimabuku KK; Cho H; Townsend EB; Rosario-Ortiz FL; Summers RS
    Environ Sci Technol; 2014 Dec; 48(23):13735-42. PubMed ID: 25371136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desorption of micropollutant from superfine and normal powdered activated carbon in submerged-membrane system due to influent concentration change in the presence of natural organic matter: Experiments and two-component branched-pore kinetic model.
    Pan L; Nakayama A; Matsui Y; Matsushita T; Shirasaki N
    Water Res; 2022 Jan; 208():117872. PubMed ID: 34837808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of pre, post, and simultaneous loading of natural organic matter on 2-methylisoborneol adsorption on superfine powdered activated carbon: Reversibility and external pore-blocking.
    Nakayama A; Sakamoto A; Matsushita T; Matsui Y; Shirasaki N
    Water Res; 2020 Sep; 182():115992. PubMed ID: 32562960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of competitive adsorption between 2-methylisoborneol and natural organic matter on superfine and conventionally sized powdered activated carbons.
    Matsui Y; Yoshida T; Nakao S; Knappe DR; Matsushita T
    Water Res; 2012 Oct; 46(15):4741-9. PubMed ID: 22763287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and application of a predictive model for advanced wastewater treatment by adsorption onto powdered activated carbon.
    Atallah Al-Asad H; Parniske J; Qian J; Alex J; Ramaswami S; Kaetzl K; Morck T
    Water Res; 2022 Jun; 217():118427. PubMed ID: 35436734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the adsorption capacities for four typical organic pollutants on activated carbons in natural waters.
    Bunmahotama W; Hung WN; Lin TF
    Water Res; 2017 Mar; 111():28-40. PubMed ID: 28040539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid prediction of the activated carbon adsorption ratio by a regression model.
    Huang X; Yu J; Shi B; Hao H; Wang C; Jia Z; Wang Q
    Chemosphere; 2020 Apr; 245():125675. PubMed ID: 31874322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcystin-LR removal by ion exchange: Investigating multicomponent interactions in natural waters.
    Dixit F; Barbeau B; Mohseni M
    Environ Pollut; 2019 Oct; 253():790-799. PubMed ID: 31344540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Displacement effect of NOM on atrazine adsorption by PACs with different pore size distributions.
    Li Q; Snoeyink VL; Campos C; Mariñas BJ
    Environ Sci Technol; 2002 Apr; 36(7):1510-5. PubMed ID: 11999059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: influence of NOM and process modelling.
    Zoschke K; Engel C; Börnick H; Worch E
    Water Res; 2011 Oct; 45(15):4544-50. PubMed ID: 21752419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 3: Competition with natural organic matter.
    Al Mardini F; Legube B
    J Hazard Mater; 2010 Oct; 182(1-3):10-7. PubMed ID: 20619963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing and modeling organic micro-pollutant adsorption onto powdered activated carbon in different drinking waters and WWTP effluents.
    Zietzschmann F; Aschermann G; Jekel M
    Water Res; 2016 Oct; 102():190-201. PubMed ID: 27344250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simplification of the IAST for activated carbon adsorption of trace organic compounds from natural water.
    Qi S; Schideman L; Mariñas BJ; Snoeyink VL; Campos C
    Water Res; 2007 Jan; 41(2):440-8. PubMed ID: 17137611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption onto ACFC of mixture of pharmaceutical residues in water - experimental studies and modelling.
    Fallou H; Giraudet S; Cimetière N; Wolbert D; Le Cloirec P
    Environ Technol; 2021 Jul; 42(18):2845-2855. PubMed ID: 31933425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters.
    Cook D; Newcombe G; Sztajnbok P
    Water Res; 2001 Apr; 35(5):1325-33. PubMed ID: 11268853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural organic matter removal from algal-rich water and disinfection by-products formation potential reduction by powdered activated carbon adsorption.
    Park KY; Yu YJ; Yun SJ; Kweon JH
    J Environ Manage; 2019 Apr; 235():310-318. PubMed ID: 30703645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NOM, turbidity and floc size on the PAC adsorption of MIB during alum coagulation.
    Ho L; Newcombe G
    Water Res; 2005 Sep; 39(15):3668-74. PubMed ID: 16084557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Graphene Oxide for Adsorption Removal of Geosmin and 2-Methylisoborneol in the Presence of Natural Organic Matter.
    Hafuka A; Nagasato T; Yamamura H
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31151145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.