BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34896078)

  • 1. Effect of protein matrix on CP29 spectra and energy transfer pathways.
    Petry S; Götze JP
    Biochim Biophys Acta Bioenerg; 2022 Feb; 1863(2):148521. PubMed ID: 34896078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating.
    Salverda JM; Vengris M; Krueger BP; Scholes GD; Czarnoleski AR; Novoderezhkin V; van Amerongen H; van Grondelle R
    Biophys J; 2003 Jan; 84(1):450-65. PubMed ID: 12524298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Structure, Coupling Scheme, and State of Interest on the Energy Transfer in CP29.
    Petry S; Tremblay JC; Götze JP
    J Phys Chem B; 2023 Aug; 127(33):7207-7219. PubMed ID: 37581578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Excited States of the CP29 Antenna Complex of Green Plants: A Model Based on Exciton Calculations.
    Işeri Eİ; Albayrak D; Gülen D
    J Biol Phys; 2000 Dec; 26(4):321-39. PubMed ID: 23345730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stepwise two-photon excited fluorescence from higher excited states of chlorophylls in photosynthetic antenna complexes.
    Leupold D; Teuchner K; Ehlert J; Irrgang KD; Renger G; Lokstein H
    J Biol Chem; 2006 Sep; 281(35):25381-7. PubMed ID: 16799157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll transition dipole moment orientations and pathways for flow of excitation energy among the chlorophylls of the major plant antenna, LHCII.
    Iseri E; Gülen D
    Eur Biophys J; 2001 Sep; 30(5):344-53. PubMed ID: 11592691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation of chlorophyll transition moments in the higher-plant light-harvesting complex CP29.
    Simonetto R; Crimi M; Sandonà D; Croce R; Cinque G; Breton J; Bassi R
    Biochemistry; 1999 Oct; 38(40):12974-83. PubMed ID: 10529167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band shape heterogeneity of the low-energy chlorophylls of CP29: absence of mixed binding sites and excitonic interactions.
    Belgio E; Casazza AP; Zucchelli G; Garlaschi FM; Jennings RC
    Biochemistry; 2010 Feb; 49(5):882-92. PubMed ID: 20047285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic study of the light-harvesting CP29 antenna complex of photosystem II--part I.
    Feng X; Pan X; Li M; Pieper J; Chang W; Jankowiak R
    J Phys Chem B; 2013 Jun; 117(22):6585-92. PubMed ID: 23631672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Exciton Dynamics Model of
    Nguyen HL; Do TN; Akhtar P; Jansen TLC; Knoester J; Wang W; Shen JR; Lambrev PH; Tan HS
    J Phys Chem B; 2021 Feb; 125(4):1134-1143. PubMed ID: 33478222
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy transfer among CP29 chlorophylls: calculated Förster rates and experimental transient absorption at room temperature.
    Cinque G; Croce R; Holzwarth A; Bassi R
    Biophys J; 2000 Oct; 79(4):1706-17. PubMed ID: 11023879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning antenna function through hydrogen bonds to chlorophyll a.
    Llansola-Portoles MJ; Li F; Xu P; Streckaite S; Ilioaia C; Yang C; Gall A; Pascal AA; Croce R; Robert B
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148078. PubMed ID: 31476286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state.
    Romero E; Mozzo M; van Stokkum IH; Dekker JP; van Grondelle R; Croce R
    Biophys J; 2009 Mar; 96(5):L35-7. PubMed ID: 19254528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of optical spectra of the light-harvesting CP29 antenna complex of photosystem II--part II.
    Feng X; Kell A; Pieper J; Jankowiak R
    J Phys Chem B; 2013 Jun; 117(22):6593-602. PubMed ID: 23662835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential pathways for light-trapping involving beta-ligated chlorophylls.
    Balaban TS; Braun P; Hättig C; Hellweg A; Kern J; Saenger W; Zouni A
    Biochim Biophys Acta; 2009 Oct; 1787(10):1254-65. PubMed ID: 19481055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of molecular interactions in light-harvesting complexes LHCIIb, CP29, CP26 and CP24 by Stark effect spectroscopy.
    Olszówka D; Krawczyk S; Maksymiec W
    Biochim Biophys Acta; 2004 Jun; 1657(1):61-70. PubMed ID: 15238212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
    Ilioaia C; Duffy CD; Johnson MP; Ruban AV
    J Phys Chem B; 2013 May; 117(19):5841-7. PubMed ID: 23597158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitation energy equilibration in a trimeric LHCII complex involves unusual pathways.
    Novoderezhkin VI
    Phys Chem Chem Phys; 2023 Oct; 25(38):26360-26369. PubMed ID: 37750240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional organization of photosystem II antenna complexes: CP29 under the spotlight.
    Xu P; Roy LM; Croce R
    Biochim Biophys Acta Bioenerg; 2017 Oct; 1858(10):815-822. PubMed ID: 28778536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II.
    Ostroumov EE; Götze JP; Reus M; Lambrev PH; Holzwarth AR
    Photosynth Res; 2020 May; 144(2):171-193. PubMed ID: 32307623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.