These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34896169)

  • 1. Pathogens and predators impacting commercial production of microalgae and cyanobacteria.
    Molina-Grima E; García-Camacho F; Acién-Fernández FG; Sánchez-Mirón A; Plouviez M; Shene C; Chisti Y
    Biotechnol Adv; 2022; 55():107884. PubMed ID: 34896169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An environmentally friendly approach for mitigating cyanobacterial bloom and their toxins in hypereutrophic ponds: Potentiality of a newly developed granular hydrogen peroxide-based compound.
    Sinha AK; Eggleton MA; Lochmann RT
    Sci Total Environ; 2018 Oct; 637-638():524-537. PubMed ID: 29754087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.
    Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T
    PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds.
    Raeisossadati M; Moheimani NR; Parlevliet D
    Bioresour Technol; 2019 Nov; 291():121801. PubMed ID: 31326685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production.
    Xu C; Wu K; Van Ginkel SW; Igou T; Lee HJ; Bhargava A; Johnston R; Snell T; Chen Y
    Int J Mol Sci; 2015 Nov; 16(11):27450-6. PubMed ID: 26593899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wastewater treatment high rate algal ponds for biofuel production.
    Park JB; Craggs RJ; Shilton AN
    Bioresour Technol; 2011 Jan; 102(1):35-42. PubMed ID: 20674341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of large-scale microalgae production in the Middle East.
    Hirayama A; Sueyoshi MN; Nakano T; Ota Y; Kurita H; Tasaki M; Kuroiwa Y; Kato T; Serizawa S; Kojima K; Al-Maamari RS; Hasegawa T; Thomas-Hall SR; Schenk PM
    Bioresour Technol; 2022 Jan; 343():126036. PubMed ID: 34626761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.
    Jia J; Shi W; Chen Q; Lauridsen TL
    Harmful Algae; 2017 Apr; 64():63-73. PubMed ID: 28427573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial removal by a red soil-based flocculant and its effect on zooplankton: an experiment with deep enclosures in a tropical reservoir in China.
    Peng L; Lei L; Xiao L; Han B
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):30663-30674. PubMed ID: 29946840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoplankton as bioindicator for waste stabilization ponds.
    Amengual-Morro C; Moyà Niell G; Martínez-Taberner A
    J Environ Manage; 2012 Mar; 95 Suppl():S71-6. PubMed ID: 21820796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of zooplankton in constraining chytrid epidemics in phytoplankton hosts.
    Frenken T; Miki T; Kagami M; Van de Waal DB; Van Donk E; Rohrlack T; Gsell AS
    Ecology; 2020 Jan; 101(1):e02900. PubMed ID: 31544240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small omnivorous bitterling fish (Acheilognathus macropterus) facilitates dominance of cyanobacteria, rotifers and Limnodrilus in an outdoor mesocosm experiment.
    Yu J; Xia M; Kong M; He H; Guan B; Liu Z; Jeppesen E
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):23862-23870. PubMed ID: 32301086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?
    Chislock MF; Sarnelle O; Jernigan LM; Wilson AE
    Water Res; 2013 Apr; 47(6):1961-70. PubMed ID: 23395484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between planktonic microalgae and protozoan grazers.
    Tillmann U
    J Eukaryot Microbiol; 2004; 51(2):156-68. PubMed ID: 15134250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanobacteria in small water bodies: The effect of habitat and catchment area conditions.
    Kozak A; Celewicz-Gołdyn S; Kuczyńska-Kippen N
    Sci Total Environ; 2019 Jan; 646():1578-1587. PubMed ID: 30235642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential phototrophic-mixotrophic cultivation of oleaginous microalga
    Wen X; Tao H; Peng X; Wang Z; Ding Y; Xu Y; Liang L; Du K; Zhang A; Liu C; Geng Y; Li Y
    Biotechnol Biofuels; 2019; 12():27. PubMed ID: 30805027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen peroxide treatment promotes chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond.
    Yang Z; Buley RP; Fernandez-Figueroa EG; Barros MUG; Rajendran S; Wilson AE
    Environ Pollut; 2018 Sep; 240():590-598. PubMed ID: 29763862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction between cyanobacteria and zooplankton in a more eutrophic world.
    Ger KA; Urrutia-Cordero P; Frost PC; Hansson LA; Sarnelle O; Wilson AE; Lürling M
    Harmful Algae; 2016 Apr; 54():128-144. PubMed ID: 28073472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plankton participation in the performance of three constructed wetlands within a Mediterranean natural park.
    Rodrigo MA; Segura M
    Sci Total Environ; 2020 Jun; 721():137766. PubMed ID: 32172120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of elevated carbon dioxide and temperature on phytoplankton-zooplankton link: A multi-influence of climate change on freshwater planktonic communities.
    Li W; Xu X; Yao J; Tanaka N; Nishimura O; Ma H
    Sci Total Environ; 2019 Mar; 658():1175-1185. PubMed ID: 30677981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.