These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34896170)

  • 1. A review on recent advances in electrodeionization for various environmental applications.
    Rathi BS; Kumar PS; Parthiban R
    Chemosphere; 2022 Feb; 289():133223. PubMed ID: 34896170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent breakthroughs on the development of electrodeionization systems for toxic pollutants removal from water environment.
    Vinayagam V; Kishor Kumar NK; Palani KN; Ganesh S; Kushwaha OS; Pugazhendhi A
    Environ Res; 2024 Jan; 241():117549. PubMed ID: 37931737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeionization: Principle, techniques and factors influencing its performance.
    Senthil Kumar P; Varsha M; Senthil Rathi B; Rangasamy G
    Environ Res; 2023 Jan; 216(Pt 4):114756. PubMed ID: 36372148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies.
    Mistry G; Popat K; Patel J; Panchal K; Ngo HH; Bilal M; Varjani S
    Environ Res; 2023 Feb; 219():115112. PubMed ID: 36574803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrostatic shielding-based coupled electrodialysis/electrodeionization process for removal of cobalt ions from aqueous solutions.
    Dermentzis KI; Davidis AE; Dermentzi AS; Chatzichristou CD
    Water Sci Technol; 2010; 62(8):1947-53. PubMed ID: 20962412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution.
    Rathi BS; Kumar PS
    Chemosphere; 2022 Mar; 291(Pt 1):132808. PubMed ID: 34762876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion exchange extraction of heavy metals from wastewater sludges.
    Al-Enezi G; Hamoda MF; Fawzi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):455-64. PubMed ID: 15027828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization.
    Ulusoy Erol HB; Hestekin CN; Hestekin JA
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33435388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective and Chemical-Free Removal of Toxic Heavy Metal Cations from Water Using Shock Ion Extraction.
    Alkhadra MA; Jordan ML; Tian H; Arges CG; Bazant MZ
    Environ Sci Technol; 2022 Oct; 56(19):14091-14098. PubMed ID: 36150156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization.
    Dermentzis K
    J Hazard Mater; 2010 Jan; 173(1-3):647-52. PubMed ID: 19766388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of electroplating industry wastewater: a review on the various techniques.
    Rajoria S; Vashishtha M; Sangal VK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low energy consumption electrically regenerated ion-exchange for water desalination.
    He S; Zhang X; Xia X; Wang C; Xiang S
    Water Sci Technol; 2020 Oct; 82(8):1710-1719. PubMed ID: 33107864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-free electrodeionization using graphene composite electrode to purify copper-containing wastewater.
    Shen X; Liu Q; Li H; Kuang X
    Water Sci Technol; 2022 Oct; 86(7):1733-1744. PubMed ID: 36240308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An innovative compound bed of EDI device with enhancing ion-exchange resins regeneration efficiency.
    Chen X; Wang L; Wan Z; Sun W; Yang Z; Jin J; Liu G
    Water Sci Technol; 2021 May; 83(10):2549-2559. PubMed ID: 34032630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.
    Prelot B; Ayed I; Marchandeau F; Zajac J
    Environ Sci Pollut Res Int; 2014; 21(15):9334-43. PubMed ID: 24728575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removal of organics and heavy metals from industrial wastewater: A review.
    Ajiboye TO; Oyewo OA; Onwudiwe DC
    Chemosphere; 2021 Jan; 262():128379. PubMed ID: 33182079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization.
    Lee JM; Kang MS
    Membranes (Basel); 2023 Nov; 13(12):. PubMed ID: 38132892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.