These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34896382)

  • 1. Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery.
    Chavan YR; Tambe SM; Jain DD; Khairnar SV; Amin PD
    Ann Pharm Fr; 2022 Sep; 80(5):603-616. PubMed ID: 34896382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent applications of PLGA based nanostructures in drug delivery.
    Mir M; Ahmed N; Rehman AU
    Colloids Surf B Biointerfaces; 2017 Nov; 159():217-231. PubMed ID: 28797972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs.
    Mahar R; Chakraborty A; Nainwal N; Bahuguna R; Sajwan M; Jakhmola V
    AAPS PharmSciTech; 2023 Jan; 24(1):39. PubMed ID: 36653547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.
    Hines DJ; Kaplan DL
    Crit Rev Ther Drug Carrier Syst; 2013; 30(3):257-76. PubMed ID: 23614648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable perivascular wrap for controlled, local and directed drug delivery.
    Sanders WG; Hogrebe PC; Grainger DW; Cheung AK; Terry CM
    J Control Release; 2012 Jul; 161(1):81-9. PubMed ID: 22561340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PLGA: a unique polymer for drug delivery.
    Kapoor DN; Bhatia A; Kaur R; Sharma R; Kaur G; Dhawan S
    Ther Deliv; 2015 Jan; 6(1):41-58. PubMed ID: 25565440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairing-Enhanced Regioselectivity: Synthesis of Alternating Poly(lactic-
    Lu Y; Coates GW
    J Am Chem Soc; 2023 Oct; 145(41):22425-22432. PubMed ID: 37793193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories.
    Xu Y; Kim CS; Saylor DM; Koo D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1692-1716. PubMed ID: 27098357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics.
    Jain AK; Das M; Swarnakar NK; Jain S
    Crit Rev Ther Drug Carrier Syst; 2011; 28(1):1-45. PubMed ID: 21395514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents.
    Dinarvand R; Sepehri N; Manoochehri S; Rouhani H; Atyabi F
    Int J Nanomedicine; 2011; 6():877-95. PubMed ID: 21720501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery.
    Avgoustakis K
    Curr Drug Deliv; 2004 Oct; 1(4):321-33. PubMed ID: 16305394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brush-like branched biodegradable polyesters, part III. Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid).
    Frauke Pistel K; Breitenbach A; Zange-Volland R; Kissel T
    J Control Release; 2001 May; 73(1):7-20. PubMed ID: 11337055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).
    Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C
    Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments.
    Maadani AM; Salahinejad E
    J Control Release; 2022 Nov; 351():1-7. PubMed ID: 36115555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives.
    Mundargi RC; Babu VR; Rangaswamy V; Patel P; Aminabhavi TM
    J Control Release; 2008 Feb; 125(3):193-209. PubMed ID: 18083265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: Part III. Drug delivery application.
    Wu XS
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(4):575-91. PubMed ID: 15974184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLGA-based nanoparticles as cancer drug delivery systems.
    Sadat Tabatabaei Mirakabad F; Nejati-Koshki K; Akbarzadeh A; Yamchi MR; Milani M; Zarghami N; Zeighamian V; Rahimzadeh A; Alimohammadi S; Hanifehpour Y; Joo SW
    Asian Pac J Cancer Prev; 2014; 15(2):517-35. PubMed ID: 24568455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.