These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34896686)

  • 1. Discrimination of vestibular function based on inertial sensors.
    Liu X; Yu S; Zang X; Yu Q; Yang L
    Comput Methods Programs Biomed; 2022 Feb; 214():106554. PubMed ID: 34896686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor.
    Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination between healthy and patients with Parkinson's disease from hand resting activity using inertial measurement unit.
    Peres LB; Calil BC; da Silva APSPB; Dionísio VC; Vieira MF; de Oliveira Andrade A; Pereira AA
    Biomed Eng Online; 2021 May; 20(1):50. PubMed ID: 34022895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning based classification of normal, slow and fast walking by extracting multimodal features from stride interval time series.
    Aziz W; Hussain L; Khan IR; Alowibdi JS; Alkinani MH
    Math Biosci Eng; 2020 Dec; 18(1):495-517. PubMed ID: 33525104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of foot drop gait characteristic due to lumbar radiculopathy using machine learning algorithms.
    Sharif Bidabadi S; Murray I; Lee GYF; Morris S; Tan T
    Gait Posture; 2019 Jun; 71():234-240. PubMed ID: 31082655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors.
    Ku Abd Rahim KN; Elamvazuthi I; Izhar LI; Capi G
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection.
    Jabri S; Carender W; Wiens J; Sienko KH
    J Neuroeng Rehabil; 2022 Dec; 19(1):132. PubMed ID: 36456966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Gait Recognition Based on Multiple Feature Combination and Parameter Optimization Algorithms.
    Gao F; Tian T; Yao T; Zhang Q
    Comput Intell Neurosci; 2021; 2021():6693206. PubMed ID: 33727913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of human gait activities using wearable sensors.
    Halim A; Abdellatif A; Awad MI; Atia MRA
    Proc Inst Mech Eng H; 2021 Jun; 235(6):676-687. PubMed ID: 33730894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Patients with Sarcopenia Using Gait Parameters Based on Inertial Sensors.
    Kim JK; Bae MN; Lee KB; Hong SG
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Inertial Sensors to Quantify Postural Sway and Gait Performance during the Tandem Walking Test.
    Kim KJ; Gimmon Y; Millar J; Schubert MC
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms.
    Khamparia A; Gupta D; Maashi M; Mengash HA
    J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection and explainability of pathological gait patterns using a one-class support vector machine trained on inertial measurement unit based gait data.
    Teufl W; Taetz B; Miezal M; Dindorf C; Fröhlich M; Trinler U; Hogan A; Bleser G
    Clin Biomech (Bristol); 2021 Oct; 89():105452. PubMed ID: 34481198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Behavior Recognition Model Based on Feature and Classifier Selection.
    Gao G; Li Z; Huan Z; Chen Y; Liang J; Zhou B; Dong C
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning-based motor assessment of Parkinson's disease using postural sway, gait and lifestyle features on crowdsourced smartphone data.
    Abujrida H; Agu E; Pahlavan K
    Biomed Phys Eng Express; 2020 Mar; 6(3):035005. PubMed ID: 33438650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-Processing Effect on the Accuracy of Event-Based Activity Segmentation and Classification through Inertial Sensors.
    Fida B; Bernabucci I; Bibbo D; Conforto S; Schmid M
    Sensors (Basel); 2015 Sep; 15(9):23095-109. PubMed ID: 26378544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Based Abnormal Gait Classification with IMU Considering Joint Impairment.
    Hwang S; Kim J; Yang S; Moon HJ; Cho KH; Youn I; Sung JK; Han S
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.