These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 34896689)

  • 1. Detection of retinopathy disease using morphological gradient and segmentation approaches in fundus images.
    Toğaçar M
    Comput Methods Programs Biomed; 2022 Feb; 214():106579. PubMed ID: 34896689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images.
    Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ
    PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.
    Tsiknakis N; Theodoropoulos D; Manikis G; Ktistakis E; Boutsora O; Berto A; Scarpa F; Scarpa A; Fotiadis DI; Marias K
    Comput Biol Med; 2021 Aug; 135():104599. PubMed ID: 34247130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of diabetic retinopathy using custom convolutional neural network.
    Albahli S; Ahmad Hassan Yar GN
    J Xray Sci Technol; 2022; 30(2):275-291. PubMed ID: 35001904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning framework for the early detection of multi-retinal diseases.
    Ejaz S; Baig R; Ashraf Z; Alnfiai MM; Alnahari MM; Alotaibi RM
    PLoS One; 2024; 19(7):e0307317. PubMed ID: 39052616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey.
    Asiri N; Hussain M; Al Adel F; Alzaidi N
    Artif Intell Med; 2019 Aug; 99():101701. PubMed ID: 31606116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy.
    Li Y; Zhu M; Sun G; Chen J; Zhu X; Yang J
    Math Biosci Eng; 2022 Mar; 19(5):5293-5311. PubMed ID: 35430865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic disc detection in retinal fundus images using gravitational law-based edge detection.
    Alshayeji M; Al-Roomi SA; Abed S
    Med Biol Eng Comput; 2017 Jun; 55(6):935-948. PubMed ID: 27638111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple methods for the lesion detection and severity grading of diabetic retinopathy by image processing and transfer learning.
    Sugeno A; Ishikawa Y; Ohshima T; Muramatsu R
    Comput Biol Med; 2021 Oct; 137():104795. PubMed ID: 34488028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Intelligent Model for Blood Vessel Segmentation in Diagnosing DR Using CNN.
    Sangeethaa SN; Uma Maheswari P
    J Med Syst; 2018 Aug; 42(10):175. PubMed ID: 30109508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfer learning-driven ensemble model for detection of diabetic retinopathy disease.
    Chaurasia BK; Raj H; Rathour SS; Singh PB
    Med Biol Eng Comput; 2023 Aug; 61(8):2033-2049. PubMed ID: 37296285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent trends and advances in fundus image analysis: A review.
    Iqbal S; Khan TM; Naveed K; Naqvi SS; Nawaz SJ
    Comput Biol Med; 2022 Dec; 151(Pt A):106277. PubMed ID: 36370579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep image mining for diabetic retinopathy screening.
    Quellec G; Charrière K; Boudi Y; Cochener B; Lamard M
    Med Image Anal; 2017 Jul; 39():178-193. PubMed ID: 28511066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image.
    Krishnamoorthy S; Alli P
    PLoS One; 2015; 10(5):e0125542. PubMed ID: 25974230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.
    Hassan D; Gill HM; Happe M; Bhatwadekar AD; Hajrasouliha AR; Janga SC
    Front Med (Lausanne); 2022; 9():1050436. PubMed ID: 36425113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Diagnosis of Diabetic Retinopathy from Fundus Images Using Neuro-Evolutionary Algorithms.
    Aquino-Brítez D; Gómez JA; Noguera JLV; García-Torres M; Román JCM; Gardel-Sotomayor PE; Benitez VEC; Matto IC; Pinto-Roa DP; Facon J; Grillo SA
    Stud Health Technol Inform; 2022 Jun; 290():689-693. PubMed ID: 35673105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic disc detection and segmentation using saliency mask in retinal fundus images.
    Zaaboub N; Sandid F; Douik A; Solaiman B
    Comput Biol Med; 2022 Nov; 150():106067. PubMed ID: 36150251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.