BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34896737)

  • 1. Recycling of aluminium laminated pouches and Tetra Pak cartons by molten metal pyrolysis - Pilot-scale experiments and economic analysis.
    Riedewald F; Wilson E; Patel Y; Vogt D; Povey I; Barton K; Lewis L; Caris T; Santos S; O'Mahoney M; Sousa-Gallagher M
    Waste Manag; 2022 Feb; 138():172-179. PubMed ID: 34896737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-purpose pilot-scale molten metal & molten salt pyrolysis reactor.
    Riedewald F; Povey I; O'Mahoney M; Sousa-Gallagher M
    MethodsX; 2022; 9():101606. PubMed ID: 34984175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic assessment of a 40,000 t/y mixed plastic waste pyrolysis plant using direct heat treatment with molten metal: A case study of a plant located in Belgium.
    Riedewald F; Patel Y; Wilson E; Santos S; Sousa-Gallagher M
    Waste Manag; 2021 Feb; 120():698-707. PubMed ID: 33191052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequential life-cycle assessment of treatment options for repulping reject from liquid packaging board waste treatment.
    Khan MMH; Havukainen J; Niini A; Leminen V; Horttanainen M
    Waste Manag; 2023 Jan; 155():348-356. PubMed ID: 36423405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.
    Zhang SF; Zhang LL; Luo K; Sun ZX; Mei XX
    Waste Manag Res; 2014 Apr; 32(4):317-22. PubMed ID: 24622294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to increase recycling rates. The case of aluminium packaging in Austria.
    Warrings R; Fellner J
    Waste Manag Res; 2021 Jan; 39(1):53-62. PubMed ID: 32811393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery, separation and production of fuel, plastic and aluminum from the Tetra PAK waste to hydrothermal and pyrolysis processes.
    Muñoz-Batista MJ; Blázquez G; Franco JF; Calero M; Martín-Lara MA
    Waste Manag; 2022 Jan; 137():179-189. PubMed ID: 34794036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Management of aluminium packaging waste in selected European countries.
    Warrings R; Fellner J
    Waste Manag Res; 2019 Apr; 37(4):357-364. PubMed ID: 30836862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of collection portfolio expansion on key performance indicators of the Dutch recycling system for Post-Consumer Plastic Packaging Waste, a comparison between 2014 and 2017.
    Brouwer M; Picuno C; Thoden van Velzen EU; Kuchta K; De Meester S; Ragaert K
    Waste Manag; 2019 Dec; 100():112-121. PubMed ID: 31536921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upcycling polyamide containing post-consumer Tetra Pak carton packaging to valuable chemicals and recyclable polymer.
    Chen X; Luo Y; Bai X
    Waste Manag; 2021 Jul; 131():423-432. PubMed ID: 34252692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminium recovery from waste incineration bottom ash, and its oxidation level.
    Biganzoli L; Grosso M
    Waste Manag Res; 2013 Sep; 31(9):954-9. PubMed ID: 23831779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green solvents in recovery of aluminium and plastic from waste pharmaceutical blister packaging.
    Nieminen J; Anugwom I; Kallioinen M; Mänttäri M
    Waste Manag; 2020 Apr; 107():20-27. PubMed ID: 32251965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes: A partial equilibrium model.
    Larrain M; Billen P; Van Passel S
    Waste Manag; 2022 Nov; 153():355-366. PubMed ID: 36191496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technologies for chemical recycling of household plastics - A technical review and TRL assessment.
    Solis M; Silveira S
    Waste Manag; 2020 Mar; 105():128-138. PubMed ID: 32058902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups.
    van der Harst E; Potting J; Kroeze C
    Waste Manag; 2016 Feb; 48():565-583. PubMed ID: 26440926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor.
    Kremer I; Tomić T; Katančić Z; Erceg M; Papuga S; Vuković JP; Schneider DR
    J Environ Manage; 2021 Oct; 296():113145. PubMed ID: 34271358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.
    Brouwer MT; Thoden van Velzen EU; Augustinus A; Soethoudt H; De Meester S; Ragaert K
    Waste Manag; 2018 Jan; 71():62-85. PubMed ID: 29107509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.