These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34896756)

  • 41. Machine Learning for Biological Design.
    Blau T; Chades I; Ong CS
    Methods Mol Biol; 2024; 2760():319-344. PubMed ID: 38468097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bayesian optimization with evolutionary and structure-based regularization for directed protein evolution.
    Frisby TS; Langmead CJ
    Algorithms Mol Biol; 2021 Jul; 16(1):13. PubMed ID: 34210336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine learning assisted design of highly active peptides for drug discovery.
    Giguère S; Laviolette F; Marchand M; Tremblay D; Moineau S; Liang X; Biron É; Corbeil J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004074. PubMed ID: 25849257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In silico, in vitro, and in vivo machine learning in synthetic biology and metabolic engineering.
    Faulon JL; Faure L
    Curr Opin Chem Biol; 2021 Dec; 65():85-92. PubMed ID: 34280705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine Learning Guided Batched Design of a Bacterial Ribosome Binding Site.
    Zhang M; Holowko MB; Hayman Zumpe H; Ong CS
    ACS Synth Biol; 2022 Jul; 11(7):2314-2326. PubMed ID: 35704784
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Machine Learning Attempts for Predicting Human Subcutaneous Bioavailability of Monoclonal Antibodies.
    Lou H; Hageman MJ
    Pharm Res; 2021 Mar; 38(3):451-460. PubMed ID: 33710513
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Navigating the protein fitness landscape with Gaussian processes.
    Romero PA; Krause A; Arnold FH
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):E193-201. PubMed ID: 23277561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins.
    Saito Y; Oikawa M; Nakazawa H; Niide T; Kameda T; Tsuda K; Umetsu M
    ACS Synth Biol; 2018 Sep; 7(9):2014-2022. PubMed ID: 30103599
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions.
    Watanabe N; Murata M; Ogawa T; Vavricka CJ; Kondo A; Ogino C; Araki M
    J Chem Inf Model; 2020 Mar; 60(3):1833-1843. PubMed ID: 32053362
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping membrane activity in undiscovered peptide sequence space using machine learning.
    Lee EY; Fulan BM; Wong GC; Ferguson AL
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Machine Learning Study on the Thermostability Prediction of (R)-
    Jia LL; Sun TT; Wang Y; Shen Y
    Biomed Res Int; 2021; 2021():2593748. PubMed ID: 34447850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Revolutionizing Membrane Design Using Machine Learning-Bayesian Optimization.
    Gao H; Zhong S; Zhang W; Igou T; Berger E; Reid E; Zhao Y; Lambeth D; Gan L; Afolabi MA; Tong Z; Lan G; Chen Y
    Environ Sci Technol; 2022 Feb; 56(4):2572-2581. PubMed ID: 34968041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increasing metabolic pathway flux by using machine learning models.
    Zhou K; Ng W; Cortés-Peña Y; Wang X
    Curr Opin Biotechnol; 2020 Dec; 66():179-185. PubMed ID: 32896771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fast activation maximization for molecular sequence design.
    Linder J; Seelig G
    BMC Bioinformatics; 2021 Oct; 22(1):510. PubMed ID: 34670493
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extracting features from protein sequences to improve deep extreme learning machine for protein fold recognition.
    Ibrahim W; Abadeh MS
    J Theor Biol; 2017 May; 421():1-15. PubMed ID: 28351701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.
    Qin X; Liu M; Zhang L; Liu G
    Comput Biol Chem; 2021 Apr; 91():107456. PubMed ID: 33610129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization.
    Bedbrook CN; Yang KK; Rice AJ; Gradinaru V; Arnold FH
    PLoS Comput Biol; 2017 Oct; 13(10):e1005786. PubMed ID: 29059183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. ProteinNet: a standardized data set for machine learning of protein structure.
    AlQuraishi M
    BMC Bioinformatics; 2019 Jun; 20(1):311. PubMed ID: 31185886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feature engineering with clinical expert knowledge: A case study assessment of machine learning model complexity and performance.
    Roe KD; Jawa V; Zhang X; Chute CG; Epstein JA; Matelsky J; Shpitser I; Taylor CO
    PLoS One; 2020; 15(4):e0231300. PubMed ID: 32324754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facilitating Machine Learning-Guided Protein Engineering with Smart Library Design and Massively Parallel Assays.
    Chu HY; Wong ASL
    Adv Genet (Hoboken); 2021 Dec; 2(4):2100038. PubMed ID: 36619853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.