These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34896756)

  • 81. Development of advanced machine learning models for analysis of plutonium surrogate optical emission spectra.
    Rao AP; Jenkins PR; Auxier JD; Shattan MB; Patnaik AK
    Appl Opt; 2022 Mar; 61(7):D30-D38. PubMed ID: 35297826
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm.
    Xia J; Yang D; Zhou H; Chen Y; Zhang H; Liu T; Heidari AA; Chen H; Pan Z
    Comput Biol Med; 2022 Feb; 141():105137. PubMed ID: 34953358
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 84. ProtPlat: an efficient pre-training platform for protein classification based on FastText.
    Jin Y; Yang Y
    BMC Bioinformatics; 2022 Feb; 23(1):66. PubMed ID: 35148686
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Designing Multi-target Compound Libraries with Gaussian Process Models.
    Bieler M; Reutlinger M; Rodrigues T; Schneider P; Kriegl JM; Schneider G
    Mol Inform; 2016 May; 35(5):192-8. PubMed ID: 27492085
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Codon optimization with deep learning to enhance protein expression.
    Fu H; Liang Y; Zhong X; Pan Z; Huang L; Zhang H; Xu Y; Zhou W; Liu Z
    Sci Rep; 2020 Oct; 10(1):17617. PubMed ID: 33077783
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Bayesian Algorithm for Retrosynthesis.
    Guo Z; Wu S; Ohno M; Yoshida R
    J Chem Inf Model; 2020 Oct; 60(10):4474-4486. PubMed ID: 32975943
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Predictive classifier models built from natural products with antimalarial bioactivity using machine learning approach.
    Egieyeh S; Syce J; Malan SF; Christoffels A
    PLoS One; 2018; 13(9):e0204644. PubMed ID: 30265702
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Research on Multiple Spectral Ranges with Deep Learning for SpO
    Shen CH; Chen WL; Wu JJ
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009870
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Deep diversification of an AAV capsid protein by machine learning.
    Bryant DH; Bashir A; Sinai S; Jain NK; Ogden PJ; Riley PF; Church GM; Colwell LJ; Kelsic ED
    Nat Biotechnol; 2021 Jun; 39(6):691-696. PubMed ID: 33574611
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Prediction of Nitrated Tyrosine Residues in Protein Sequences by Extreme Learning Machine and Feature Selection Methods.
    Chen L; Wang S; Zhang YH; Wei L; Xu X; Huang T; Cai YD
    Comb Chem High Throughput Screen; 2018; 21(6):393-402. PubMed ID: 29848272
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Adapting protein sequences for optimized therapeutic efficacy.
    Dellas N; Liu J; Botham RC; Huisman GW
    Curr Opin Chem Biol; 2021 Oct; 64():38-47. PubMed ID: 33933937
    [TBL] [Abstract][Full Text] [Related]  

  • 94. DDBJ Data Analysis Challenge: a machine learning competition to predict Arabidopsis chromatin feature annotations from DNA sequences.
    Kaminuma E; Baba Y; Mochizuki M; Matsumoto H; Ozaki H; Okayama T; Kato T; Oki S; Fujisawa T; Nakamura Y; Arita M; Ogasawara O; Kashima H; Takagi T
    Genes Genet Syst; 2020 Apr; 95(1):43-50. PubMed ID: 32213716
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Automatically evaluating balance using machine learning and data from a single inertial measurement unit.
    Kamran F; Harrold K; Zwier J; Carender W; Bao T; Sienko KH; Wiens J
    J Neuroeng Rehabil; 2021 Jul; 18(1):114. PubMed ID: 34256799
    [TBL] [Abstract][Full Text] [Related]  

  • 96. adabmDCA: adaptive Boltzmann machine learning for biological sequences.
    Muntoni AP; Pagnani A; Weigt M; Zamponi F
    BMC Bioinformatics; 2021 Oct; 22(1):528. PubMed ID: 34715775
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Improvement of Epitope Prediction Using Peptide Sequence Descriptors and Machine Learning.
    Munteanu CR; Gestal M; Martínez-Acevedo YG; Pedreira N; Pazos A; Dorado J
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31491969
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Machine learning for functional protein design.
    Notin P; Rollins N; Gal Y; Sander C; Marks D
    Nat Biotechnol; 2024 Feb; 42(2):216-228. PubMed ID: 38361074
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bayesian machine learning ensemble approach to quantify model uncertainty in predicting groundwater storage change.
    Yin J; Medellín-Azuara J; Escriva-Bou A; Liu Z
    Sci Total Environ; 2021 May; 769():144715. PubMed ID: 33736244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.