These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34896829)

  • 1. Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization.
    Liu Y; Du X; Wang Z; Wang L; Liu Z; Shi W; Zheng R; Dou X; Zhu H; Yuan X
    J Colloid Interface Sci; 2022 Mar; 609():289-296. PubMed ID: 34896829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization.
    Wang K; Du X; Liu Z; Geng B; Shi W; Liu Y; Dou X; Zhu H; Pan L; Yuan X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2752-2759. PubMed ID: 34785052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bismuth Nanoparticle-Embedded Porous Carbon Frameworks as a High-Rate Chloride Storage Electrode for Water Desalination.
    Shi W; Qian X; Xue M; Que W; Gao X; Zheng D; Liu W; Wu F; Shen J; Cao X; Gao C
    ACS Appl Mater Interfaces; 2021 May; 13(18):21149-21156. PubMed ID: 33905227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization.
    Byles BW; Hayes-Oberst B; Pomerantseva E
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32313-32322. PubMed ID: 30182718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes.
    Zhao W; Ding M; Guo L; Yang HY
    Small; 2019 Mar; 15(9):e1805505. PubMed ID: 30714314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Heterostructure Constructed by Few-Layered MXenes with a MoS
    Cai Y; Wang Y; Zhang L; Fang R; Wang J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2833-2847. PubMed ID: 34982527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural/Compositional-Tailoring of Nickel Hexacyanoferrate Electrodes for Highly Efficient Capacitive Deionization.
    Bao Y; Hao J; Zhang S; Zhu D; Li F
    Small; 2023 Aug; 19(34):e2300384. PubMed ID: 37116117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Polyoxometalate-Based Binder-Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination.
    Liu H; Zhang J; Xu X; Wang Q
    Chemistry; 2020 Apr; 26(19):4403-4409. PubMed ID: 32017296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination.
    Liu N; Zhang Y; Xu X; Wang Y
    Dalton Trans; 2020 May; 49(19):6321-6327. PubMed ID: 32342067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Battery-Type and Pseudocapacitive Charge Storage in Ag/Ti
    Liang M; Wang L; Presser V; Dai X; Yu F; Ma J
    Adv Sci (Weinh); 2020 Sep; 7(18):e2000621. PubMed ID: 34437769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-Desalination-Capacity Dual-Ion Electrochemical Deionization Device Based on Na
    Zhao W; Guo L; Ding M; Huang Y; Yang HY
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40540-40548. PubMed ID: 30372016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance.
    Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism.
    Guo L; Mo R; Shi W; Huang Y; Leong ZY; Ding M; Chen F; Yang HY
    Nanoscale; 2017 Sep; 9(35):13305-13312. PubMed ID: 28858348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability.
    Xiong Y; Yu F; Arnold S; Wang L; Presser V; Ren Y; Ma J
    Research (Wash D C); 2021; 2021():9754145. PubMed ID: 34806019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization.
    Shi W; Gao X; Mao J; Qian X; Liu W; Wu F; Li H; Zeng Z; Shen J; Cao X
    Front Chem; 2020; 8():415. PubMed ID: 32500060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na
    Xing S; Cheng Y; Yu F; Ma J
    J Colloid Interface Sci; 2021 Sep; 598():511-518. PubMed ID: 33934016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal.
    Wang S; Wang G; Wu T; Li C; Wang Y; Pan X; Zhan F; Zhang Y; Wang S; Qiu J
    Environ Sci Technol; 2019 Jun; 53(11):6292-6301. PubMed ID: 31094203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.