These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34896921)

  • 1. Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas.
    Krzemińska M; Piwoni-Piórewicz A; Shunatova N; Duczmal-Czernikiewicz A; Muszyński A; Kubiak M; Kukliński P
    Mar Environ Res; 2022 Jan; 173():105542. PubMed ID: 34896921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal carbonate mineralogy of Scottish bryozoans.
    Loxton J; Spencer Jones M; Najorka J; Smith AM; Porter JS
    PLoS One; 2018; 13(6):e0197533. PubMed ID: 29897916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Summer and winter MgCO
    Iglikowska A; Krzemińska M; Renaud PE; Berge J; Hop H; Kukliński P
    Mar Environ Res; 2020 Dec; 162():105166. PubMed ID: 33049544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomineralization in bryozoans: present, past and future.
    Taylor PD; Lombardi C; Cocito S
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1118-50. PubMed ID: 25370313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.
    Swezey DS; Bean JR; Ninokawa AT; Hill TM; Gaylord B; Sanford E
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28424343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and calcification of marine bryozoans in a changing ocean.
    Smith AM
    Biol Bull; 2014 Jun; 226(3):203-10. PubMed ID: 25070865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons.
    Porter SM
    Geobiology; 2010 Sep; 8(4):256-77. PubMed ID: 20550583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal variation of skeletal Mg-calcite in Antarctic marine calcifiers.
    Figuerola B; Gore DB; Johnstone G; Stark JS
    PLoS One; 2019; 14(5):e0210231. PubMed ID: 31063495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of removal of organic material on stable isotope ratios in skeletal carbonate from taxonomic groups with complex mineralogies.
    Key MM; Smith AM; Phillips NJ; Forrester JS
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8901. PubMed ID: 32681532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism of CaCO
    Piwoni-Piórewicz A; Strekopytov S; Humphreys-Williams E; Najorka J; Szymczycha B; Kukliński P
    Geobiology; 2022 Jul; 20(4):575-596. PubMed ID: 35610771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition.
    Stanley SM; Ries JB; Hardie LA
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15323-6. PubMed ID: 12399549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of environmental variables on fouling bryozoan species in the Eastern Aegean Sea.
    Kocak F; Kucuksezgin F; Bakal I
    Mar Pollut Bull; 2019 Apr; 141():46-51. PubMed ID: 30955756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales)
    Nash MC; Adey W
    J Phycol; 2017 Oct; 53(5):970-984. PubMed ID: 28671731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcite formation in soft coral sclerites is determined by a single reactive extracellular protein.
    Rahman MA; Oomori T; Wörheide G
    J Biol Chem; 2011 Sep; 286(36):31638-49. PubMed ID: 21768106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic responses of bryozoans to ocean acidification.
    Swezey DS; Bean JR; Hill TM; Gaylord B; Ninokawa AT; Sanford E
    J Exp Biol; 2017 Dec; 220(Pt 23):4399-4409. PubMed ID: 28939560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal resorption in bryozoans: occurrence, function and recognition.
    Batson PB; Tamberg Y; Taylor PD; Gordon DP; Smith AM
    Biol Rev Camb Philos Soc; 2020 Oct; 95(5):1341-1371. PubMed ID: 32558290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental Drivers of an Intertidal Bryozoan Community in the Barents Sea: A Case Study.
    Evseeva OY; Ishkulova TG; Dvoretsky AG
    Animals (Basel); 2022 Feb; 12(5):. PubMed ID: 35268120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and mineral responses of corals grown under artificial Calcite Sea conditions.
    Conci N; Griesshaber E; Rivera-Vicéns RE; Schmahl WW; Vargas S; Wörheide G
    Geobiology; 2024; 22(1):e12586. PubMed ID: 38385602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylomineralogy of the coralline red algae: correlation of skeletal mineralogy with molecular phylogeny.
    Smith AM; Sutherland JE; Kregting L; Farr TJ; Winter DJ
    Phytochemistry; 2012 Sep; 81():97-108. PubMed ID: 22795764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.