These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34897234)

  • 1. Automatic Screening for Ocular Anomalies Using Fundus Photographs.
    Matta S; Lamard M; Conze PH; Le Guilcher A; Ricquebourg V; Benyoussef AA; Massin P; Rottier JB; Cochener B; Quellec G
    Optom Vis Sci; 2022 Mar; 99(3):281-291. PubMed ID: 34897234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards population-independent, multi-disease detection in fundus photographs.
    Matta S; Lamard M; Conze PH; Le Guilcher A; Lecat C; Carette R; Basset F; Massin P; Rottier JB; Cochener B; Quellec G
    Sci Rep; 2023 Jul; 13(1):11493. PubMed ID: 37460629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Identification of Diabetic Retinopathy Using Deep Learning.
    Gargeya R; Leng T
    Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evaluation of diabetic retinopathy screening using fundus photography: Evaluation and epidemiologic factors at Nantes university medical center].
    Clément M; Lebreton O; Chaillous L; Weber M
    J Fr Ophtalmol; 2019 Mar; 42(3):281-287. PubMed ID: 30857800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic Accuracy of Detecting Diabetic Retinopathy by Using Digital Fundus Photographs in the Peripheral Health Facilities of Bangladesh: Validation Study.
    Begum T; Rahman A; Nomani D; Mamun A; Adams A; Islam S; Khair Z; Khair Z; Anwar I
    JMIR Public Health Surveill; 2021 Mar; 7(3):e23538. PubMed ID: 33411671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic accuracy of non-mydriatic fundus camera for screening of diabetic retinopathy: A hospital based observational study in Pakistan.
    Fahadullah M; Memon NA; Salim S; Ahsan S; Fahim MF; Mumtaz SN; Shaikh SA; Memon MS
    J Pak Med Assoc; 2019 Mar; 69(3):378-382. PubMed ID: 30890831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study.
    Xie Y; Nguyen QD; Hamzah H; Lim G; Bellemo V; Gunasekeran DV; Yip MYT; Qi Lee X; Hsu W; Li Lee M; Tan CS; Tym Wong H; Lamoureux EL; Tan GSW; Wong TY; Finkelstein EA; Ting DSW
    Lancet Digit Health; 2020 May; 2(5):e240-e249. PubMed ID: 33328056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm-Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy.
    Bawankar P; Shanbhag N; K SS; Dhawan B; Palsule A; Kumar D; Chandel S; Sood S
    PLoS One; 2017; 12(12):e0189854. PubMed ID: 29281690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
    Li Z; He Y; Keel S; Meng W; Chang RT; He M
    Ophthalmology; 2018 Aug; 125(8):1199-1206. PubMed ID: 29506863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agreement and Diagnostic Test Accuracy on Grading Diabetic Retinopathy Using Fundus Photographs by Allied Medical Personnel at a Community Diabetic Retinopathy Screening Program in Nepal.
    Thapa R; Bajimaya S; Pradhan E; Sharma S; Kshetri BB; Paudel M; Paudyal G
    Ophthalmic Epidemiol; 2021 Dec; 28(6):509-515. PubMed ID: 33502930
    [No Abstract]   [Full Text] [Related]  

  • 12. The diagnostic accuracy of single- and five-field fundus photography in diabetic retinopathy screening by primary care physicians.
    Srihatrai P; Hlowchitsieng T
    Indian J Ophthalmol; 2018 Jan; 66(1):94-97. PubMed ID: 29283131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OPHDIAT: a telemedical network screening system for diabetic retinopathy in the Ile-de-France.
    Massin P; Chabouis A; Erginay A; Viens-Bitker C; Lecleire-Collet A; Meas T; Guillausseau PJ; Choupot G; André B; Denormandie P
    Diabetes Metab; 2008 Jun; 34(3):227-34. PubMed ID: 18468470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs.
    Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M
    Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic Identification of Referral-Warranted Diabetic Retinopathy Using Deep Learning on Mobile Phone Images.
    Ludwig CA; Perera C; Myung D; Greven MA; Smith SJ; Chang RT; Leng T
    Transl Vis Sci Technol; 2020 Dec; 9(2):60. PubMed ID: 33294301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Federated Learning for Diabetic Retinopathy Detection in a Multi-center Fundus Screening Network.
    Matta S; Hassine MB; Lecat C; Borderie L; Guilcher AL; Massin P; Cochener B; Lamard M; Quellec G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for sight-threatening diabetic retinopathy: comparison of fundus photography with automated color contrast threshold test.
    Ong GL; Ripley LG; Newsom RS; Cooper M; Casswell AG
    Am J Ophthalmol; 2004 Mar; 137(3):445-52. PubMed ID: 15013866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy.
    Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H
    Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera.
    Savoy FM; Rao DP; Toh JK; Ong B; Sivaraman A; Sharma A; Das T
    BMJ Open; 2024 Sep; 14(9):e081398. PubMed ID: 39237272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields.
    Boucher MC; Gresset JA; Angioi K; Olivier S
    Can J Ophthalmol; 2003 Dec; 38(7):557-68. PubMed ID: 14740797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.