These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34897354)

  • 1. Pickering emulsions stabilized by metal-organic frameworks, graphitic carbon nitride and graphene oxide.
    Zhang F; Sha Y; Cheng X; Zhang J
    Soft Matter; 2021 Dec; 18(1):10-18. PubMed ID: 34897354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural and rheological investigation of upcycled metal-organic frameworks stabilized Pickering emulsions.
    Lorignon F; Gossard A; Carboni M; Meyer D
    J Colloid Interface Sci; 2021 Mar; 586():305-314. PubMed ID: 33162038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Carbon Nitride-Stabilized Pickering Emulsions.
    Han C; Cui Q; Meng P; Waclawik ER; Yang H; Xu J
    Langmuir; 2018 Aug; 34(34):10135-10143. PubMed ID: 30078324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pickering emulsions stabilized by a metal-organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites.
    Zhang F; Liu L; Tan X; Sang X; Zhang J; Liu C; Zhang B; Han B; Yang G
    Soft Matter; 2017 Oct; 13(40):7365-7370. PubMed ID: 28967941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphitic Carbon Nitride Stabilized Water-in-Water Emulsions.
    Zhang J; Frank BD; Kumru B; Schmidt BVKJ
    Macromol Rapid Commun; 2021 Apr; 42(8):e2000433. PubMed ID: 33103292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Induced reversible conversion between non-Pickering and Pickering high internal phase emulsion.
    Zhang Y; Luo P; Liu Y; Li H; Li X; Lu H; Wu Y; Liu D
    Phys Chem Chem Phys; 2022 Jul; 24(28):17121-17130. PubMed ID: 35791919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications.
    Peito S; Peixoto D; Ferreira-Faria I; Margarida Martins A; Margarida Ribeiro H; Veiga F; Marto J; Cláudia Paiva-Santos A
    Int J Pharm; 2022 Mar; 615():121455. PubMed ID: 35031412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ambient CO
    Shi Y; Xiong D; Li Z; Wang H; Qiu J; Zhang H; Wang J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53385-53393. PubMed ID: 33170635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic studies of Pickering emulsions stabilized by uniform-sized PLGA particles: preparation and stabilization mechanism.
    Qi F; Wu J; Sun G; Nan F; Ngai T; Ma G
    J Mater Chem B; 2014 Nov; 2(43):7605-7611. PubMed ID: 32261898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-in-Oil Pickering Emulsions Stabilized Solely by Water-Dispersible Phytosterol Particles.
    Lan M; Song Y; Ou S; Zheng J; Huang C; Wang Y; Zhou H; Hu W; Liu F
    Langmuir; 2020 Dec; 36(49):14991-14998. PubMed ID: 33256410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of oil-in-water emulsions with graphene oxide and cobalt oxide nanosheets and preparation of armored polymer particles.
    Edgehouse K; Escamilla M; Wang L; Dent R; Pachuta K; Kendall L; Wei P; Sehirlioglu A; Pentzer E
    J Colloid Interface Sci; 2019 Apr; 541():269-278. PubMed ID: 30708243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism.
    Jia K; Guo Y; Yu Y; Zhang J; Yu L; Wen W; Mai Y
    Soft Matter; 2021 Mar; 17(12):3346-3357. PubMed ID: 33630989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles.
    Yuan DB; Hu YQ; Zeng T; Yin SW; Tang CH; Yang XQ
    Food Funct; 2017 Jun; 8(6):2220-2230. PubMed ID: 28513748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destabilizing Pickering emulsions using fumed silica particles with different wettabilities.
    Griffith C; Daigle H
    J Colloid Interface Sci; 2019 Jul; 547():117-126. PubMed ID: 30952073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives.
    Ni L; Yu C; Wei Q; Liu D; Qiu J
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202115885. PubMed ID: 35524649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal ion-triggered Pickering emulsions and foams for efficient metal ion extraction.
    Huang Z; Sun X; Liu Y; Cui J; Song A; Hao J
    J Colloid Interface Sci; 2021 Nov; 602():187-196. PubMed ID: 34119757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the repartition of the particles in Pickering emulsions in relation with their rheological properties.
    Velandia SF; Marchal P; Lemaitre C; Sadtler V; Roques-Carmes T
    J Colloid Interface Sci; 2021 May; 589():286-297. PubMed ID: 33472148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can we prevent lipid oxidation in emulsions by using fat-based Pickering particles?
    Schröder A; Sprakel J; Boerkamp W; Schroën K; Berton-Carabin CC
    Food Res Int; 2019 Jun; 120():352-363. PubMed ID: 31000249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles.
    Nonomura Y; Kobayashi N
    J Colloid Interface Sci; 2009 Feb; 330(2):463-6. PubMed ID: 18992900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs.
    Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ
    Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.