BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34897373)

  • 1. Experimental Hemodynamics Within the Penn State Fontan Circulatory Assist Device.
    Ponnaluri SV; Christensen EJ; Good BC; Kubicki CJ; Deutsch S; Cysyk JP; Weiss WJ; Manning KB
    J Biomech Eng; 2022 Jul; 144(7):. PubMed ID: 34897373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Modeling of the Penn State Fontan Circulation Assist Device.
    Good BC; Ponnaluri SV; Weiss WJ; Manning KB
    ASAIO J; 2022 Dec; 68(12):1513-1522. PubMed ID: 35421006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target Flow-Pressure Operating Range for Designing a Failing Fontan Cavopulmonary Support Device.
    Farahmand M; Kavarana MN; Trusty PM; Kung EO
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2925-2933. PubMed ID: 32078526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation.
    Lin WCP; Doyle MG; Roche SL; Honjo O; Forbes TL; Amon CH
    J Thorac Cardiovasc Surg; 2019 Nov; 158(5):1424-1433.e5. PubMed ID: 31005303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling pediatric ventricle assist devices to the Fontan circulation: simulations with a lumped-parameter model.
    Pekkan K; Frakes D; De Zelicourt D; Lucas CW; Parks WJ; Yoganathan AP
    ASAIO J; 2005; 51(5):618-28. PubMed ID: 16322728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large eddy simulation of powered Fontan hemodynamics.
    Delorme Y; Anupindi K; Kerlo AE; Shetty D; Rodefeld M; Chen J; Frankel S
    J Biomech; 2013 Jan; 46(2):408-22. PubMed ID: 23177085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro analysis of the PediMag and CentriMag for right-sided failing Fontan support.
    Trusty PM; Tree M; Maher K; Slesnick TC; Kanter KR; Yoganathan AP; Deshpande SR
    J Thorac Cardiovasc Surg; 2019 Nov; 158(5):1413-1421. PubMed ID: 31133353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional laser flow measurements of a patient-specific fontan physiology with mechanical circulatory assistance.
    Chopski SG; Rangus OM; Downs EA; Moskowitz WB; Throckmorton AL
    Artif Organs; 2015 Jun; 39(6):E67-78. PubMed ID: 25865262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic Effect of a Fontan Assist Device on a Numerical Fontan Circulatory Model under Various Medication Scenarios.
    Tran P; Peak P; Karnik S; Nguyen D; Fraser K; Broda C; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38082998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavopulmonary assist for the failing Fontan circulation: impact of ventricular function on mechanical support strategy.
    Giridharan GA; Ising M; Sobieski MA; Koenig SC; Chen J; Frankel S; Rodefeld MD
    ASAIO J; 2014; 60(6):707-15. PubMed ID: 25158887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switching the Left and the Right Hearts: A Novel Bi-ventricle Mechanical Support Strategy with Spared Native Single-Ventricle.
    Şişli E; Yıldırım C; Aka İB; Tuncer ON; Atay Y; Özbaran M; Pekkan K
    Ann Biomed Eng; 2023 Dec; 51(12):2853-2872. PubMed ID: 37635154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical support of total cavopulmonary connection with an axial flow pump.
    Riemer RK; Amir G; Reichenbach SH; Reinhartz O
    J Thorac Cardiovasc Surg; 2005 Aug; 130(2):351-4. PubMed ID: 16077398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereo-particle image velocimetry measurements of a patient-specific Fontan physiology utilizing novel pressure augmentation stents.
    Chopski SG; Rangus OM; Fox CS; Moskowitz WB; Throckmorton AL
    Artif Organs; 2015 Mar; 39(3):228-36. PubMed ID: 25597518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavopulmonary assist: Long-term reversal of the Fontan paradox.
    Rodefeld MD; Marsden A; Figliola R; Jonas T; Neary M; Giridharan GA
    J Thorac Cardiovasc Surg; 2019 Dec; 158(6):1627-1636. PubMed ID: 31564543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of an external compression device for fontan mechanical assistance.
    Valdovinos J; Shkolyar E; Carman GP; Levi DS
    Artif Organs; 2014 Mar; 38(3):199-207. PubMed ID: 24147904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Evaluation of a Self-powered Venous Ejector Pump for Fontan Patients.
    Rasooli R; Giljarhus KET; Hiorth A; Jolma IW; Vinningland JL; de Lange C; Brun H; Holmstrom H
    Cardiovasc Eng Technol; 2023 Jun; 14(3):428-446. PubMed ID: 36877450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavopulmonary assist: circulatory support for the univentricular Fontan circulation.
    Rodefeld MD; Boyd JH; Myers CD; LaLone BJ; Bezruczko AJ; Potter AW; Brown JW
    Ann Thorac Surg; 2003 Dec; 76(6):1911-6; discussion 1916. PubMed ID: 14667610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Risks and Benefits of Using a Commercially Available Ventricular Assist Device for Failing Fontan Cavopulmonary Support: A Modeling Investigation.
    Farahmand M; Kavarana MN; Kung EO
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):213-219. PubMed ID: 30998452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Numerical Simulation Comparing a Cavopulmonary Assist Device and VA ECMO for Failing Fontan Support.
    Hsu PL; Wang D; Ballard-Croft C; Xiao D; Zwischenberger JB
    ASAIO J; 2017; 63(5):604-612. PubMed ID: 28319522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.