These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Optothermal Manipulations of Colloidal Particles and Living Cells. Lin L; Hill EH; Peng X; Zheng Y Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720 [TBL] [Abstract][Full Text] [Related]
4. Opto-Thermoelectric Tweezers: Principles and Applications. Pughazhendi A; Chen Z; Wu Z; Li J; Zheng Y Front Phys; 2020; 8():. PubMed ID: 38031585 [TBL] [Abstract][Full Text] [Related]
5. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study. Samadi M; Darbari S; Moravvej-Farshi MK Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023 [TBL] [Abstract][Full Text] [Related]
6. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
8. Nanoradiator-Mediated Deterministic Opto-Thermoelectric Manipulation. Liu Y; Lin L; Bangalore Rajeeva B; Jarrett JW; Li X; Peng X; Kollipara P; Yao K; Akinwande D; Dunn AK; Zheng Y ACS Nano; 2018 Oct; 12(10):10383-10392. PubMed ID: 30226980 [TBL] [Abstract][Full Text] [Related]
9. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Hong C; Yang S; Ndukaife JC Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919 [TBL] [Abstract][Full Text] [Related]
10. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. Li Z; Yang J; Liu S; Jiang X; Wang H; Hu X; Xue S; He S; Xing X Opt Express; 2018 Dec; 26(26):34665-34674. PubMed ID: 30650887 [TBL] [Abstract][Full Text] [Related]
11. Atomistic modeling and rational design of optothermal tweezers for targeted applications. Ding H; Kollipara PS; Lin L; Zheng Y Nano Res; 2021 Jan; 14(1):295-303. PubMed ID: 35475031 [TBL] [Abstract][Full Text] [Related]
13. Opto-thermoelectric pulling of light-absorbing particles. Lin L; Kollipara PS; Kotnala A; Jiang T; Liu Y; Peng X; Korgel BA; Zheng Y Light Sci Appl; 2020; 9():34. PubMed ID: 32194948 [TBL] [Abstract][Full Text] [Related]
14. Integrated Multifunctional Graphene Discs 2D Plasmonic Optical Tweezers for Manipulating Nanoparticles. Yang H; Mei Z; Li Z; Liu H; Deng H; Xiao G; Li J; Luo Y; Yuan L Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630991 [TBL] [Abstract][Full Text] [Related]
15. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light. Zhang J; Liu W; Zhu Z; Yuan X; Qin S Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527 [TBL] [Abstract][Full Text] [Related]
17. First-principles study of the optical and thermoelectric properties of tetragonal-silicene. Mondal NS; Nath S; Jana D; Ghosh NK Phys Chem Chem Phys; 2021 May; 23(20):11863-11875. PubMed ID: 33988639 [TBL] [Abstract][Full Text] [Related]
18. Opto-thermoelectric microswimmers. Peng X; Chen Z; Kollipara PS; Liu Y; Fang J; Lin L; Zheng Y Light Sci Appl; 2020; 9():141. PubMed ID: 32864116 [TBL] [Abstract][Full Text] [Related]
19. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. Kotnala A; Kollipara PS; Li J; Zheng Y Nano Lett; 2020 Jan; 20(1):768-779. PubMed ID: 31834809 [TBL] [Abstract][Full Text] [Related]
20. Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection. Gholizadeh E; Jafari B; Golmohammadi S Sci Rep; 2023 Feb; 13(1):1975. PubMed ID: 36737494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]