These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis. Yeo YS; Nybo SE; Chittiboyina AG; Weerasooriya AD; Wang YH; Góngora-Castillo E; Vaillancourt B; Buell CR; DellaPenna D; Celiz MD; Jones AD; Wurtele ES; Ransom N; Dudareva N; Shaaban KA; Tibrewal N; Chandra S; Smillie T; Khan IA; Coates RM; Watt DS; Chappell J J Biol Chem; 2013 Feb; 288(5):3163-73. PubMed ID: 23243312 [TBL] [Abstract][Full Text] [Related]
3. The T296V Mutant of Amorpha-4,11-diene Synthase Is Defective in Allylic Diphosphate Isomerization but Retains the Ability To Cyclize the Intermediate (3R)-Nerolidyl Diphosphate to Amorpha-4,11-diene. Li Z; Gao R; Hao Q; Zhao H; Cheng L; He F; Liu L; Liu X; Chou WK; Zhu H; Cane DE Biochemistry; 2016 Dec; 55(48):6599-6604. PubMed ID: 27933789 [TBL] [Abstract][Full Text] [Related]
4. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Li JX; Fang X; Zhao Q; Ruan JX; Yang CQ; Wang LJ; Miller DJ; Faraldos JA; Allemann RK; Chen XY; Zhang P Biochem J; 2013 May; 451(3):417-26. PubMed ID: 23438177 [TBL] [Abstract][Full Text] [Related]
6. An analysis of characterized plant sesquiterpene synthases. Durairaj J; Di Girolamo A; Bouwmeester HJ; de Ridder D; Beekwilder J; van Dijk AD Phytochemistry; 2019 Feb; 158():157-165. PubMed ID: 30446165 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Mercke P; Bengtsson M; Bouwmeester HJ; Posthumus MA; Brodelius PE Arch Biochem Biophys; 2000 Sep; 381(2):173-80. PubMed ID: 11032404 [TBL] [Abstract][Full Text] [Related]
8. Selectivity of fungal sesquiterpene synthases: role of the active site's H-1 alpha loop in catalysis. López-Gallego F; Wawrzyn GT; Schmidt-Dannert C Appl Environ Microbiol; 2010 Dec; 76(23):7723-33. PubMed ID: 20889795 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture. Grundy DJ; Chen M; González V; Leoni S; Miller DJ; Christianson DW; Allemann RK Biochemistry; 2016 Apr; 55(14):2112-21. PubMed ID: 26998816 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli for production of valerenadiene. Nybo SE; Saunders J; McCormick SP J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031 [TBL] [Abstract][Full Text] [Related]
11. 1,10/1,11-Cyclization catalyzed by diverged plant sesquiterpene synthases is dependent on a single residue. Huang JQ; Li DM; Li JX; Lin JL; Tian X; Wang LJ; Chen XY; Fang X Org Biomol Chem; 2021 Aug; 19(30):6650-6656. PubMed ID: 34264250 [TBL] [Abstract][Full Text] [Related]
12. Biosynthesis of valerenic acid by engineered Saccharomyces cerevisiae. Zhao M; Zhang C; Wang H; He S; Lu W Biotechnol Lett; 2022 Jul; 44(7):857-865. PubMed ID: 35643816 [TBL] [Abstract][Full Text] [Related]
13. The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase. Di Girolamo A; Durairaj J; van Houwelingen A; Verstappen F; Bosch D; Cankar K; Bouwmeester H; de Ridder D; van Dijk ADJ; Beekwilder J Arch Biochem Biophys; 2020 Nov; 695():108647. PubMed ID: 33121934 [TBL] [Abstract][Full Text] [Related]
14. Dynamic coupling analysis on plant sesquiterpene synthases provides leads for the identification of product specificity determinants. Singh S; Thulasiram HV; Sengupta D; Kulkarni K Biochem Biophys Res Commun; 2021 Jan; 536():107-114. PubMed ID: 33387748 [TBL] [Abstract][Full Text] [Related]
15. Structural elucidation of cisoid and transoid cyclization pathways of a sesquiterpene synthase using 2-fluorofarnesyl diphosphates. Noel JP; Dellas N; Faraldos JA; Zhao M; Hess BA; Smentek L; Coates RM; O'Maille PE ACS Chem Biol; 2010 Apr; 5(4):377-92. PubMed ID: 20175559 [TBL] [Abstract][Full Text] [Related]
16. Evolutionary and mechanistic insights from the reconstruction of α-humulene synthases from a modern (+)-germacrene A synthase. Gonzalez V; Touchet S; Grundy DJ; Faraldos JA; Allemann RK J Am Chem Soc; 2014 Oct; 136(41):14505-12. PubMed ID: 25230152 [TBL] [Abstract][Full Text] [Related]
17. Probing Enzymatic Structure and Function in the Dihydroxylating Sesquiterpene Synthase ZmEDS. Liang J; Wang L; Liu J; Shen Q; Fu J; Peters RJ; Wang Q Biochemistry; 2020 Jul; 59(28):2660-2666. PubMed ID: 32558549 [TBL] [Abstract][Full Text] [Related]
18. A small, differentially regulated family of farnesyl diphosphate synthases in maize (Zea mays) provides farnesyl diphosphate for the biosynthesis of herbivore-induced sesquiterpenes. Richter A; Seidl-Adams I; Köllner TG; Schaff C; Tumlinson JH; Degenhardt J Planta; 2015 Jun; 241(6):1351-61. PubMed ID: 25680349 [TBL] [Abstract][Full Text] [Related]
19. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Köllner TG; Schnee C; Gershenzon J; Degenhardt J Plant Cell; 2004 May; 16(5):1115-31. PubMed ID: 15075399 [TBL] [Abstract][Full Text] [Related]
20. Structure and mechanism of the diterpene cyclase ent-copalyl diphosphate synthase. Köksal M; Hu H; Coates RM; Peters RJ; Christianson DW Nat Chem Biol; 2011 May; 7(7):431-3. PubMed ID: 21602811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]