BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34898253)

  • 1. Neutralization of Typhoid Toxin by Alpaca-Derived, Single-Domain Antibodies Targeting the PltB and CdtB Subunits.
    Dulal HP; Vance DJ; Neupane DP; Chen X; Tremblay JM; Shoemaker CB; Mantis NJ; Song J
    Infect Immun; 2022 Feb; 90(2):e0051521. PubMed ID: 34898253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits.
    Ahn C; Yang YA; Neupane DP; Nguyen T; Richards AF; Sim JH; Mantis NJ; Song J
    iScience; 2021 May; 24(5):102454. PubMed ID: 34113815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Insights into the Assembly and Functional Diversification of Typhoid Toxin.
    Liu X; Chen Z; Jiao X; Jiang X; Qiu J; You F; Long H; Cao H; Fowler CC; Gao X
    mBio; 2022 Feb; 13(1):e0191621. PubMed ID: 35012347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternate typhoid toxin assembly evolved independently in the two
    Chemello AJ; Fowler CC
    mBio; 2024 Apr; 15(4):e0340323. PubMed ID: 38501873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of host adaptation in the Salmonella typhoid toxin.
    Gao X; Deng L; Stack G; Yu H; Chen X; Naito-Matsui Y; Varki A; Galán JE
    Nat Microbiol; 2017 Dec; 2(12):1592-1599. PubMed ID: 28993610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and Characterization of Typhoid Toxin-Neutralizing Human Monoclonal Antibodies.
    Jiao X; Smith S; Stack G; Liang Q; Bradley A; Kellam P; Galán JE
    Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32661121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prophylactic potential of cytolethal distending toxin B (CdtB) subunit of typhoid toxin against Typhoid fever.
    Thakur R; Pathania P; Kaur N; Joshi V; Kondepudi KK; Suri CR; Rishi P
    Sci Rep; 2019 Dec; 9(1):18404. PubMed ID: 31804525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution Epitope Positioning of a Large Collection of Neutralizing and Nonneutralizing Single-Domain Antibodies on the Enzymatic and Binding Subunits of Ricin Toxin.
    Vance DJ; Tremblay JM; Rong Y; Angalakurthi SK; Volkin DB; Middaugh CR; Weis DD; Shoemaker CB; Mantis NJ
    Clin Vaccine Immunol; 2017 Dec; 24(12):. PubMed ID: 29021300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo tropism of Salmonella Typhi toxin to cells expressing a multiantennal glycan receptor.
    Yang YA; Lee S; Zhao J; Thompson AJ; McBride R; Tsogtbaatar B; Paulson JC; Nussinov R; Deng L; Song J
    Nat Microbiol; 2018 Feb; 3(2):155-163. PubMed ID: 29203881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of 9-O-acetylated glycan receptor moieties in the typhoid toxin binding and intoxication.
    Nguyen T; Lee S; Yang YA; Ahn C; Sim JH; Kei TG; Barnard KN; Yu H; Millano SK; Chen X; Parrish CR; Song J
    PLoS Pathog; 2020 Feb; 16(2):e1008336. PubMed ID: 32084237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salmonella Typhoid Toxin PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and Virulence.
    Lee S; Yang YA; Milano SK; Nguyen T; Ahn C; Sim JH; Thompson AJ; Hillpot EC; Yoo G; Paulson JC; Song J
    Cell Host Microbe; 2020 Jun; 27(6):937-949.e6. PubMed ID: 32396840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection.
    Vrentas CE; Moayeri M; Keefer AB; Greaney AJ; Tremblay J; O'Mard D; Leppla SH; Shoemaker CB
    J Biol Chem; 2016 Oct; 291(41):21596-21606. PubMed ID: 27539858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of typhoid toxin in the pathogenesis of Salmonella Typhi.
    Thakur R; Suri CR; Rishi P
    Microb Pathog; 2022 Mar; 164():105444. PubMed ID: 35149176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutralization of Clostridium difficile toxin B with VHH-Fc fusions targeting the delivery and CROPs domains.
    Hussack G; Ryan S; van Faassen H; Rossotti M; MacKenzie CR; Tanha J
    PLoS One; 2018; 13(12):e0208978. PubMed ID: 30540857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural basis of Salmonella A
    Nguyen T; Richards AF; Neupane DP; Feathers JR; Yang YA; Sim JH; Byun H; Lee S; Ahn C; Van Slyke G; Fromme JC; Mantis NJ; Song J
    Cell Rep; 2021 Sep; 36(10):109654. PubMed ID: 34496256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Majority of Typhoid Toxin-Positive
    Gaballa A; Cheng RA; Harrand AS; Cohn AR; Wiedmann M
    mSphere; 2021 Jan; 6(1):. PubMed ID: 33408236
    [No Abstract]   [Full Text] [Related]  

  • 17. Single-Domain Antibodies for Intracellular Toxin Neutralization.
    Czajka TF; Mantis NJ
    Methods Mol Biol; 2022; 2446():469-487. PubMed ID: 35157289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model.
    Moayeri M; Leysath CE; Tremblay JM; Vrentas C; Crown D; Leppla SH; Shoemaker CB
    J Biol Chem; 2015 Mar; 290(10):6584-95. PubMed ID: 25564615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin.
    Vance DJ; Tremblay JM; Mantis NJ; Shoemaker CB
    J Biol Chem; 2013 Dec; 288(51):36538-47. PubMed ID: 24202178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen.
    Chang SJ; Jin SC; Jiao X; Galán JE
    PLoS Pathog; 2019 Apr; 15(4):e1007704. PubMed ID: 30951565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.