These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34898851)
1. The effect of deep feature concatenation in the classification problem: An approach on COVID-19 disease detection. Cengil E; Çınar A Int J Imaging Syst Technol; 2022 Jan; 32(1):26-40. PubMed ID: 34898851 [TBL] [Abstract][Full Text] [Related]
2. COVID-AleXception: A Deep Learning Model Based on a Deep Feature Concatenation Approach for the Detection of COVID-19 from Chest X-ray Images. Ayadi M; Ksibi A; Al-Rasheed A; Soufiene BO Healthcare (Basel); 2022 Oct; 10(10):. PubMed ID: 36292519 [TBL] [Abstract][Full Text] [Related]
3. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Qi X; Brown LG; Foran DJ; Nosher J; Hacihaliloglu I Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):197-206. PubMed ID: 33420641 [TBL] [Abstract][Full Text] [Related]
4. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Rahimzadeh M; Attar A Inform Med Unlocked; 2020; 19():100360. PubMed ID: 32501424 [TBL] [Abstract][Full Text] [Related]
5. MediNet: transfer learning approach with MediNet medical visual database. Reis HC; Turk V; Khoshelham K; Kaya S Multimed Tools Appl; 2023 Mar; ():1-44. PubMed ID: 37362724 [TBL] [Abstract][Full Text] [Related]
6. Classifying COVID-19 and Viral Pneumonia Lung Infections through Deep Convolutional Neural Network Model using Chest X-Ray Images. Verma DK; Saxena G; Paraye A; Rajan A; Rawat A; Verma RK J Med Phys; 2022; 47(1):57-64. PubMed ID: 35548026 [TBL] [Abstract][Full Text] [Related]
7. Deep learning attention-guided radiomics for COVID-19 chest radiograph classification. Yang D; Ren G; Ni R; Huang YH; Lam NFD; Sun H; Wan SBN; Wong MFE; Chan KK; Tsang HCH; Xu L; Wu TC; Kong FS; Wáng YXJ; Qin J; Chan LWC; Ying M; Cai J Quant Imaging Med Surg; 2023 Feb; 13(2):572-584. PubMed ID: 36819269 [TBL] [Abstract][Full Text] [Related]
8. Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images. Salehi M; Mohammadi R; Ghaffari H; Sadighi N; Reiazi R Br J Radiol; 2021 May; 94(1121):20201263. PubMed ID: 33861150 [TBL] [Abstract][Full Text] [Related]
9. Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images. V J S; D JF Comput Math Methods Med; 2021; 2021():9269173. PubMed ID: 34795794 [TBL] [Abstract][Full Text] [Related]
10. COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization. Hamza A; Attique Khan M; Wang SH; Alhaisoni M; Alharbi M; Hussein HS; Alshazly H; Kim YJ; Cha J Front Public Health; 2022; 10():1046296. PubMed ID: 36408000 [TBL] [Abstract][Full Text] [Related]
11. Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography. Lin KH; Lu NH; Okamoto T; Huang YH; Liu KY; Matsushima A; Chang CC; Chen TB Healthcare (Basel); 2023 May; 11(10):. PubMed ID: 37239653 [TBL] [Abstract][Full Text] [Related]
12. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
13. COVID-19 classification using deep feature concatenation technique. Saad W; Shalaby WA; Shokair M; El-Samie FA; Dessouky M; Abdellatef E J Ambient Intell Humaniz Comput; 2022; 13(4):2025-2043. PubMed ID: 33680212 [TBL] [Abstract][Full Text] [Related]
14. White blood cells detection and classification based on regional convolutional neural networks. Kutlu H; Avci E; Özyurt F Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248 [TBL] [Abstract][Full Text] [Related]
15. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Liang G; Zheng L Comput Methods Programs Biomed; 2020 Apr; 187():104964. PubMed ID: 31262537 [TBL] [Abstract][Full Text] [Related]
16. A two-tier feature selection method using Coalition game and Nystrom sampling for screening COVID-19 from chest X-Ray images. Bhowal P; Sen S; Sarkar R J Ambient Intell Humaniz Comput; 2023; 14(4):3659-3674. PubMed ID: 34567278 [TBL] [Abstract][Full Text] [Related]
17. Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison. Sethy PK; Behera SK; Anitha K; Pandey C; Khan MR J Xray Sci Technol; 2021; 29(2):197-210. PubMed ID: 33492267 [TBL] [Abstract][Full Text] [Related]
18. CoviDetNet: A new COVID-19 diagnostic system based on deep features of chest x-ray. Aslan M Int J Imaging Syst Technol; 2022 Sep; 32(5):1447-1463. PubMed ID: 35935665 [TBL] [Abstract][Full Text] [Related]
19. UBNet: Deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients. Widodo CS; Naba A; Mahasin MM; Yueniwati Y; Putranto TA; Patra PI J Xray Sci Technol; 2022; 30(1):57-71. PubMed ID: 34864714 [TBL] [Abstract][Full Text] [Related]
20. An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Baghdadi NA; Malki A; Abdelaliem SF; Magdy Balaha H; Badawy M; Elhosseini M Comput Biol Med; 2022 May; 144():105383. PubMed ID: 35290811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]